Abstract

The aims of this investigation were to delineate the internal biomechanics of the spine under vertical impact vector and assess the probability of injury. Male and female whole-body human finite element models were used. The restrained occupants were positioned on the seat, and caudo-cephalad impacts were applied to the base. Different acceleration-time profiles (50–200 ms pulse durations, 11–46 g peak accelerations) were used as inputs in both models. The resulting stress–strain profiles in the cortical and cancellous bones were evaluated at different vertebral levels. Using the peak transmitted forces at the thoracolumbar disc level as the response variable, the probability of injury for the male spine was obtained from experimental risk curves for the various pulses. Results showed that the shorter pulse durations and rise times impart greater loading on the thoracolumbar spine. The analysis of von Mises stress and strain distributions showed that the compression-related fractures are multifaceted with contributions from both the cortical and cancellous bony components of the body. Profiles are provided in the paper. The intervertebral disc may be involved in the fracture mechanism, because it acts as a medium of load transfer between adjacent vertebrae. Injury risks for the shortest pulse was 63%, and for the widest pulse it was close to zero, and injury probabilities for other pulses are given. The present modeling study provides insights into the mechanisms of internal load transfer and describes injury risk levels from caudal to cephalad impacts.

References

References
1.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Maiman
,
D. J.
,
Scarboro
,
M.
, and
Rudd
,
R. W.
,
2012
, “
Thoracolumbar Spine Fractures in Frontal Impact Crashes
,”
Ann. Adv. Automot. Med.
,
56
, pp.
277
283
.https://www.ncbi.nlm.nih.gov/pubmed/23169137
2.
Kaufman
,
R. P.
,
Ching
,
R. P.
,
Willis
,
M. M.
,
Mack
,
C. D.
,
Gross
,
J. A.
, and
Bulger
,
E. M.
,
2013
, “
Burst Fractures of the Lumbar Spine in Frontal Crashes
,”
Accid. Anal. Prev.
,
59
, pp.
153
163
.10.1016/j.aap.2013.05.023
3.
Jakobsson
,
L.
,
Björklund
,
M.
, and
Westerlund
,
A.
,
2016
, “
Thoracolumbar Spine Injuries in Car Crashes
,”
IRCOBI
, Malaga, Spain, Sept. 14–16, Paper No. IRC16-22, pp.
104
112
.http://www.ircobi.org/wordpress/downloads/irc16/pdf-files/22.pdf
4.
Danelson
,
K.
,
Watkins
,
L.
,
Hendricks
,
J.
,
Frounfelker
,
P.
,
Pizzolato-Heine
,
K.
,
Valentine
,
R.
, and
Loftis
,
K.
,
2018
, “
Analysis of the Frequency and Mechanism of Injury to Warfighters in the Under-Body Blast Environment
,”
Stapp Car Crash J.
,
62
, pp.
489
513
.https://pubmed.ncbi.nlm.nih.gov/30609005/
5.
Owens
,
B. D.
,
Kragh
,
J. F.
, Jr.
,
Wenke
,
J. C.
,
Macaitis
,
J.
,
Wade
,
C. E.
, and
Holcomb
,
J. B.
,
2008
, “
Combat Wounds in Operation Iraqi Freedom and Operation Enduring Freedom
,”
J. Trauma
,
64
(
2
), pp.
295
299
.10.1097/TA.0b013e318163b875
6.
Schoenfeld
,
A. J.
,
Goodman
,
G. P.
, and
Belmont
,
P. J.
, Jr.
,
2012
, “
Characterization of Combat-Related Spinal Injuries Sustained by a U.S. Army Brigade Combat Team During Operation Iraqi Freedom
,”
Spine J.
,
12
(
9
), pp.
771
776
.10.1016/j.spinee.2010.05.004
7.
Helgeson
,
M. D.
,
Bevevino
,
A. J.
, and
Hilibrand
,
A. S.
,
2013
, “
Update on the Evidence for Adjacent Segment Degeneration and Disease
,”
Spine J.
,
13
(
3
), pp.
342
351
.10.1016/j.spinee.2012.12.009
8.
Yoganandan
,
N.
,
DeVogel
,
N.
,
Moore
,
J.
,
Pintar
,
F.
,
Banerjee
,
A.
, and
Zhang
,
J.
,
2020
, “
Human Lumbar Spine Responses From Vertical Loading: Ranking of Forces Via Brier Score Metrics and Injury Risk Curves
,”
Ann. Biomed. Eng.
,
48
(
1
), pp.
79
91
.10.1007/s10439-019-02363-5
9.
Yoganandan
,
N.
,
Moore
,
J.
,
Arun
,
M. W.
, and
Pintar
,
F. A.
,
2014
, “
Dynamic Responses of Intact Post Mortem Human Surrogates From Inferior-to-Superior Loading at the Pelvis
,”
Stapp Car Crash J.
,
58
, pp.
123
143
.https://pubmed.ncbi.nlm.nih.gov/26192952/
10.
Elemance LLC
,
2019
, “
Global Human Body Models Consortium User Manual: M50 Detailed Occupant Version 5.1.1, Version 3.1 F05 for LS-DYNA®
,” Elemance LLC, Society of Automotive Engineers, Warrendale, PA.
11.
Aira
,
J.
,
Guleyupoglu
,
B.
,
Jones
,
D.
,
Koya
,
B.
,
Davis
,
M.
, and
Gayzik
,
F. S.
,
2019
, “
Validated Thoracic Vertebrae and Costovertebral Joints Increase Biofidelity of a Human Body Model in Hub Impacts
,”
Traffic Inj. Prev.
,
20
(
Suppl. 2
), pp.
S1
S6
.10.1080/15389588.2019.1638511
12.
Poulard
,
D.
,
Kent
,
R. W.
,
Kindig
,
M.
,
Li
,
Z.
, and
Subit
,
D.
,
2015
, “
Thoracic Response Targets for a Computational Model: A Hierarchical Approach to Assess the Biofidelity of a 50th-Percentile Occupant Male Finite Element Model
,”
J. Mech. Behav. Biomed. Mater.
,
45
, pp.
45
64
.10.1016/j.jmbbm.2015.01.017
13.
Richards
,
A. M.
,
Coleman
,
N. W.
,
Knight
,
T. A.
,
Belkoff
,
S. M.
, and
Mears
,
S. C.
,
2010
, “
Bone Density and Cortical Thickness in Normal, Osteopenic, and Osteoporotic Sacra
,”
J. Osteoporosis
,
2010
, pp.
1
5
.10.4061/2010/504078
14.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Stemper
,
B. D.
,
Baisden
,
J. L.
,
Aktay
,
R.
,
Shender
,
B. S.
, and
Paskoff
,
G.
,
2006
, “
Bone Mineral Density of Human Female Cervical and Lumbar Spines From Quantitative Computed Tomography
,”
Spine
,
31
(
1
), pp.
73
76
.10.1097/01.brs.0000192684.12046.93
15.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Stemper
,
B. D.
,
Baisden
,
J. L.
,
Aktay
,
R.
,
Shender
,
B. S.
,
Paskoff
,
G.
, and
Laud
,
P.
,
2006
, “
Trabecular Bone Density of Male Human Cervical and Lumbar Vertebrae
,”
Bone
,
39
(
2
), pp.
336
344
.10.1016/j.bone.2006.01.160
16.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
(
7
), pp.
601
608
.10.1016/S0021-9290(98)00057-8
17.
Ritzel
,
H.
,
Amling
,
M.
,
Posl
,
M.
,
Hahn
,
M.
, and
Delling
,
G.
,
1997
, “
The Thickness of Human Vertebral Cortical Bone and Its Changes in Aging and Osteoporosis: A Histomorphometric Analysis of the Complete Spinal Column From Thirty-Seven Autopsy Specimens
,”
J. Bone Miner. Res.
,
12
(
1
), pp.
89
95
.10.1359/jbmr.1997.12.1.89
18.
McElhaney
,
J. H.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
(
4
), pp.
1231
1236
.10.1152/jappl.1966.21.4.1231
19.
Yang
,
K. H.
, and
Kish
,
V. L.
,
1988
, “
Compressibility Measurement of Human Intervertebral Nucleus Pulposus
,”
J. Biomech.
,
21
(
10
), p.
865
.10.1016/0021-9290(88)90059-0
20.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2000
, “
Geometric and Mechanical Properties of Human Cervical Spine Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
623
629
.10.1115/1.1322034
21.
McEntire
,
J.
,
Logsdon
,
K.
,
Vasquez
,
K.
,
Daniel
,
R.
,
Brozoski
,
F. T.
,
Lidl
,
G. M.
, and
Mazuchowski
,
E. L.
,
2018
, “
Thoracolumbar Injuries Resulting From Whole-Body Exposure to Vertical Acceleration
,”
Military Health System Research Symposium
, Kissimmee, FL, Aug. 20–23, p. 1.
22.
Arun
,
M. W.
,
Umale
,
S.
,
Humm
,
J. R.
,
Yoganandan
,
N.
,
Hadagali
,
P.
, and
Pintar
,
F. A.
,
2016
, “
Evaluation of Kinematics and Injuries to Restrained Occupants in Far-Side Crashes Using Full-Scale Vehicle and Human Body Models
,”
Traffic Inj. Prev.
,
17
(
Suppl. 1
), pp.
116
123
.10.1080/15389588.2016.1197394
23.
Xiao
,
S.
,
Yang
,
J.
,
Forman
,
J.
,
Panzer
,
M.
,
Xiao
,
Z.
, and
Crandall
,
J.
,
2016,
Effect of Contact Friction Between Seatbelt and Human Body Model on Simulation of Rib Fracture in Frontal Impact
,”
Eighth International Conference on Measuring Technology and Mechatronics Automation
(
ICMTMA
), Macau, China, Mar. 11–12, pp.
255
257
.10.1109/ICMTMA.2016.69
24.
Zhao
,
J. Z.
, and
Narwani
,
G.
,
2007
, “
Biomechanical Analysis of Hard Tissue Responses and Injuries With Finite Element Full Human Body Model
,”
20th International Technical Conference on the Enhanced Safety of Vehicles
(
ESV
),
NHTSA
,
Lyon, France
, 18–21, pp.
1
15
.https://www.semanticscholar.org/paper/BIOMECHANICAL-ANALYSIS-OF-HARD-TISSUE-RESPONSES-AND-Zhao-Narwani/cc7099750ea9acb27c2a63a6b5ef606900378e37
25.
Umale
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Arun
,
M. W. J.
,
2018
, “
Factors Influencing the Effectiveness of Occupant Retention Under Far-Side Impacts: A Parametric Study
,”
J. Mech. Behav. Biomed. Mater.
,
84
, pp.
235
248
.10.1016/j.jmbbm.2018.05.021
26.
Iwamoto
,
M.
,
Nakahira
,
Y.
, and
Kimpara
,
H.
,
2015
, “
Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash
,”
Traffic Inj. Prev.
,
16
(
Suppl. 1
), pp.
S36
48
.10.1080/15389588.2015.1015000
27.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Schlick
,
M.
,
Humm
,
J. R.
,
Voo
,
L.
,
Merkle
,
A.
, and
Kleinberger
,
M.
,
2015
, “
Vertical Accelerator Device to Apply Loads Simulating Blast Environments in the Military to Human Surrogates
,”
J. Biomech.
,
48
(
12
), pp.
3534
3538
.10.1016/j.jbiomech.2015.06.008
28.
Kuppa
,
S.
,
Eppinger
,
R. H.
,
McKoy
,
F.
,
Nguyen
,
T.
,
Pintar
,
F. A.
, and
Yoganandan
,
N.
,
2003
, “
Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy With Rib Extensions (ES-2RE)
,”
Stapp Car Crash J.
,
47
, pp.
189
210
.https://pubmed.ncbi.nlm.nih.gov/17096250/
29.
Maltese
,
M. R.
,
Eppinger
,
R. H.
,
Rhule
,
H. H.
,
Donnelly
,
B. R.
,
Pintar
,
F. A.
, and
Yoganandan
,
N.
,
2002
, “
Response Corridors of Human Surrogates in Lateral Impacts
,”
Stapp Car Crash J.
,
46
, pp.
321
351
.https://pubmed.ncbi.nlm.nih.gov/17096232/
30.
Nowicki
,
B. H.
,
Yu
,
S.
,
Reinartz
,
J.
,
Pintar
,
F.
,
Yoganandan
,
N.
, and
Haughton
,
V. M.
,
1990
, “
Effect of Axial Loading on Neural Foramina and Nerve Roots in the Lumbar Spine
,”
Radiology
,
176
(
2
), pp.
433
437
.10.1148/radiology.176.2.2367657
You do not currently have access to this content.