Abstract

A three-dimensional (3D) finite element (FE) human knee joint model developed from magnetic resonance images (MRIs) has been validated with the sets of experimental results in a normalized scale. The performance of the 3D FE knee joint model has been tested, simulating a physical experiment. The experiment provided the direct measurement of anterior cruciate ligament (ACL) strains due to the forces of quadriceps muscle force (QMF) followed by ground reaction force (GRF) at low knee flexion. Accurate and precise anatomy has been obtained from segmented MRI images. The ACL strain subject to the loading was calculated and analyzed compared with the measured data from the experimental tests. The study shows that the pre-activated ACL strain, which is measured before the application of GRF, increased nonlinearly with increasing QMF before landing. However, the total ACL strain, which is measured after both QMF and GRF applied, reaches out to the limited constant value (6%) instead of crossing the ACL failure value. These results suggest that the forces generated from QMF and GRF at low flexion may not bring ACL to a failure level as presented in the experimental tests. The results of the FE model fall into the standard deviations of the 22 cadaveric knees testing results, which represents the successful mechanical modeling of ACL and the surrounding structures of the human knee joint. The model may further be used to investigate the risks of the ACL injury.

References

References
1.
Caplan
,
N.
, and
Kader
,
D. F.
,
2014
, “
Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer: NCAA Data and Review of Literature
,”
Classic Papers Orthop.
,
10
(
7
), pp.
153
155
.10.1177/036354659502300611
2.
Finsterbush
,
A.
,
Frankl
,
U.
,
Matan
,
Y.
, and
Mann
,
G.
,
1990
, “
Secondary Damage to the Knee After Isolated Injury of the Anterior Cruciate Ligament
,”
Am. J. Sports Med.
,
18
(
5
), pp.
475
479
.10.1177/036354659001800505
3.
Yu
,
B.
, and
Garrett
,
W. E.
,
2007
, “
Mechanisms of Non-Contact ACL Injuries
,”
Br. J. Sports Med.
,
41
(
Suppl. 1
), pp.
i47
i51
.10.1136/bjsm.2007.037192
4.
Hewett
,
T. E.
,
Lindenfeld
,
T. N.
,
Riccobene
,
J. V.
, and
Noyes
,
F. R.
,
1999
, “
The Effect of Neuromuscular Training on the Incidence of Knee Injury in Female Athletes. A Prospective Study
,”
Am. J. Sports Med.
,
27
(
6
), pp.
699
706
.10.1177/03635465990270060301
5.
Jones
,
H. P.
,
Appleyard
,
R. C.
,
Mahajan
,
S.
, and
Murrell
,
G. A. C.
,
2003
, “
Meniscal and Chondral Loss in the Anterior Cruciate Ligament Injured Knee
,”
33
(
14
), pp.
1075
1089
.
6.
Lohmander
,
L. S.
,
Englund
,
P. M.
,
Dahl
,
L. L.
, and
Roos
,
E. M.
,
2007
, “
The Long-Term Consequence of Anterior Cruciate Ligament and Meniscus Injuries
,”
Am. J. Sports Med.
,
35
(
10
), pp.
1756
1769
.10.1177/0363546507307396
7.
McLean
,
S. G.
, and
Beaulieu
,
M. L.
,
2010
, “
Complex Integrative Morphological and Mechanical Contributions to ACL Injury Risk
,”
Exercise Sport Sci. Rev.
,
38
(
4
), pp.
192
200
.10.1097/JES.0b013e3181f450b4
8.
Renstrom
,
P.
,
Ljungqvist
,
A.
,
Arendt
,
E.
,
Beynnon
,
B.
,
Fukubayashi
,
T.
,
Garrett
,
W.
,
Georgoulis
,
T.
,
Hewett
,
T. E.
,
Johnson
,
R.
,
Krosshaug
,
T.
,
Mandelbaum
,
B.
,
Micheli
,
L.
,
Myklebust
,
G.
,
Roos
,
E.
,
Roos
,
H.
,
Schamasch
,
P.
,
Shultz
,
S.
,
Werner
,
S.
,
Wojtys
,
E.
,
Engebretsen
,
L.
, and
Khan
,
K.
,
2008
, “
Non-Contact ACL Injuries in Female Athletes: An International Olympic Committee Current Concepts Statement
,”
Br. J. Sports Med.,
42
(
6
), pp.
394
412
.https://bjsm.bmj.com/content/42/6/394
9.
Bahr
,
R.
, and
Krosshaug
,
T.
,
2005
, “
Understanding Injury Mechanisms: A Key Component of Preventing Injuries in Sport
,”
Br. J. Sports Med.
,
39
(
6
), pp.
324
329
.10.1136/bjsm.2005.018341
10.
Griffin
,
L. Y.
,
Albohm
,
M. J.
,
Arendt
,
E. A.
,
Bahr
,
R.
,
Beynnon
,
B. D.
,
DeMaio
,
M.
,
Dick
,
R. W.
,
Engebretsen
,
L.
,
Garrett
,
W. E.
,
Hannafin
,
J. A.
,
Hewett
,
T. E.
,
Huston
,
L. J.
,
Ireland
,
M. L.
,
Johnson
,
R. J.
,
Lephart
,
S.
,
Mandelbaum
,
B. R.
,
Mann
,
B. J.
,
Marks
,
P. H.
,
Marshall
,
S. W.
,
Myklebust
,
G.
,
Noyes
,
F. R.
,
Powers
,
C.
,
Shields
,
C.
,
Shultz
,
S. J.
,
Silvers
,
H.
,
Slauterbeck
,
J.
,
Taylor
,
D. C.
,
Teitz
,
C. C.
,
Wojtys
,
E. M.
, and
Yu
,
B.
, “
Understanding and Preventing Noncontact Anterior Cruciate Ligament Injuries: A Review of the Hunt Valley II Meeting, January 2005
,”
Am. J. Sports Med.,
34
(
9
), pp.
1512
1532
.10.1177/0363546506286866
11.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1992
, “
Strain in the Anteromedial Bundle of the Anterior Cruciate Ligament Under Combination Loading
,”
J. Orthop. Res.
,
10
(
2
), pp.
167
176
.10.1002/jor.1100100203
12.
Beynnon
,
B. D.
,
Fleming
,
B. C.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Renström
,
P. A.
, and
Pope
,
M. H.
,
1995
, “
Anterior Cruciate Ligament Strain Behavior During Rehabilitation Exercises In Vivo
,”
Am. J. Sports Med.
,
23
(
1
), pp.
24
34
.10.1177/036354659502300105
13.
DeMorat
,
G.
,
Weinhold
,
P.
,
Blackburn
,
T.
,
Chudik
,
S.
, and
Garrett
,
W.
,
2004
, “
Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury
,”
Am. J. Sports Med.
,
32
(
2
), pp.
477
483
.10.1177/0363546503258928
14.
Draganich
,
L. F.
, and
Vahey
,
J. W.
,
1990
, “
An In Vitro Study of Anterior Cruciate Ligament Strain Induced by Quadriceps and Hamstrings Forces
,”
J. Orthop. Res.
,
8
(
1
), pp.
57
63
.10.1002/jor.1100080107
15.
Fleming
,
B. C.
,
Renstrom
,
P. A.
,
Beynnon
,
B. D.
,
Engstrom
,
B.
,
Peura
,
G. D.
,
Badger
,
G. J.
, and
Johnson
,
R. J.
,
2001
, “
The Effect of Weightbearing and External Loading on Anterior Cruciate Ligament Strain
,”
J. Biomech.
,
34
(
2
), pp.
163
170
.10.1016/S0021-9290(00)00154-8
16.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Shepard
,
M. F.
,
Finerman
,
G. A. M.
, and
Slauterbeck
,
J. L.
,
1995
, “
Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces
,”
J. Orthop. Res.
,
13
(
6
), pp.
930
935
.10.1002/jor.1100130618
17.
Shin
,
C. S.
,
Chaudhari
,
A. M.
, and
Andriacchi
,
T. P.
,
2007
, “
The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study
,”
J. Biomech.
,
40
(
5
), pp.
1145
1152
.10.1016/j.jbiomech.2006.05.004
18.
Withrow
,
T. J.
,
Huston
,
L. J.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2006
, “
The Relationship Between Quadriceps Muscle Force, Knee Flexion, and Anterior Cruciate Ligament Strain in an In Vitro Simulated Jump Landing
,”
Am. J. Sports Med.
,
34
(
2
), pp.
269
274
.10.1177/0363546505280906
19.
Dürselen
,
L.
,
Claes
,
L.
, and
Kiefer
,
H.
,
1995
, “
The Influence of Muscle Forces and External Loads on Cruciate Ligament Strain
,”
Am. J. Sports Med.
,
23
(
1
), pp.
129
136
.10.1177/036354659502300122
20.
Li
,
G.
,
Rudy
,
T. W.
,
Sakane
,
M.
,
Kanamori
,
A.
,
Ma
,
C. B.
, and
Woo
,
S. L. Y.
,
1999
, “
The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and in-Situ Forces in the ACL
,”
J. Biomech.
,
32
(
4
), pp.
395
400
.10.1016/S0021-9290(98)00181-X
21.
Bhuiyan
,
A.
,
Ekwaro-Osire
,
S.
,
Musa
,
S. M.
, and
Hossan
,
M. R.
,
2018
, “
Joint Conformity Resulting From Quadriceps Muscle and Ground Reaction Forces Influence Anterior Cruciate Ligament Response
,”
Elixir Mech. Eng.
,
115
, pp.
49679
49685
.
22.
Hashemi
,
J.
,
Breighner
,
R.
,
Jang
,
T. H.
,
Chandrashekar
,
N.
,
Ekwaro-Osire
,
S.
, and
Slauterbeck
,
J. R.
,
2010
, “
Increasing Pre-Activation of the Quadriceps Muscle Protects the Anterior Cruciate Ligament During the Landing Phase of a Jump: An In Vitro Simulation
,”
Knee
,
17
(
3
), pp.
235
241
.10.1016/j.knee.2009.09.010
23.
Kiapour
,
A.
,
Kiapour
,
A. M.
,
Kaul
,
V.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Demetropoulos
,
C. K.
, and
Goel
,
V. K.
,
2014
, “
Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation
,”
ASME J. Biomech. Eng.
,
136
(
1
), pp.
115
129
.10.1115/1.4025692
24.
Orsi
,
A. D.
,
Chakravarthy
,
S.
,
Canavan
,
P. K.
,
Peña
,
E.
,
Goebel
,
R.
,
Vaziri
,
A.
, and
Nayeb-Hashemi
,
H.
,
2016
, “
The Effects of Knee Joint Kinematics on Anterior Cruciate Ligament Injury and Articular Cartilage Damage
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
5
), pp.
493
506
.10.1080/10255842.2015.1043626
25.
Bhuiyan
,
A. I.
,
Hashemi
,
J.
,
Shamim
,
N.
, and
Musa
,
S. M.
,
2018
, “
Tibial Eminence: A New Anatomical Risk Factor for Anterior Cruciate Ligament Injuries
,”
Multimedia Tools Appl.
,
77
(
17
), pp.
22605
22612
.10.1007/s11042-017-4874-8
26.
Shelbourne
,
K. D.
,
Davis
,
T. J.
, and
Klootwyk
,
T. E.
,
1998
, “
The Relationship Between Intercondylar Notch Width of the Femur and the Incidence of Anterior Cruciate Ligament Tears: A Prospective Study
,”
Am. J. Sports Med.
,
26
(
3
), pp.
402
408
.10.1177/03635465980260031001
27.
Chaudhari
,
A. M. W.
,
Zelman
,
E. A.
,
Flanigan
,
D. C.
,
Kaeding
,
C. C.
, and
Nagaraja
,
H. N.
,
2009
, “
Anterior Cruciate Ligament-Injured Subjects Have Smaller Anterior Cruciate Ligaments Than Matched Controls: A Magnetic Resonance Imaging Study
,”
Am. J. Sports Med.
,
37
(
7
), pp.
1282
1287
.10.1177/0363546509332256
28.
Mesfar
,
W.
, and
Shirazi-Adl
,
A.
,
2005
, “
Biomechanics of the Knee Joint in Flexion Under Various Quadriceps Forces
,”
Knee
,
12
(
6
), pp.
424
434
.10.1016/j.knee.2005.03.004
29.
Moglo
,
K. E.
, and
Shirazi-Adl
,
A.
,
2003
, “
On the Coupling Between Anterior and Posterior Cruciate Ligaments, and Knee Joint Response Under Anterior Femoral Drawer in Flexion: A Finite Element Study
,”
Clin. Biomech.
,
18
(
8
), pp.
751
759
.10.1016/S0268-0033(03)00140-2
30.
Song
,
Y.
,
Debski
,
R. E.
,
Musahl
,
V.
,
Thomas
,
M.
, and
Woo
,
S. L.
, and
Anonymous
,
2004
, “
A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation
,”
J. Biomech.
,
37
(
3
), pp.
383
390
.10.1016/S0021-9290(03)00261-6
31.
Woo
,
S. L.
,
Abramowitch
,
S. D.
,
Kilger
,
R.
, and
Liang
,
R.
,
2006
, “
Biomechancis of Knee Ligaments: Injury, Healing, and Repair
,”
J. Biomech.
,
39
(
1
), pp.
1
20
.10.1016/j.jbiomech.2004.10.025
32.
Hashemi
,
J.
,
Chandrashekar
,
N.
,
Jang
,
T.
,
Karpat
,
F.
,
Oseto
,
M.
, and
Ekwaro-Osire
,
S.
,
2007
, “
An Alternative Mechanism of Non-Contact Anterior Cruciate Ligament Injury During Jump-Landing: In-Vitro Simulation
,”
Exp. Mech.
,
47
(
3
), pp.
347
354
.10.1007/s11340-007-9043-y
You do not currently have access to this content.