Abstract

The multifidus is an important muscle for the active stabilization of the spine. Unfortunately, clinical procedures such as posterior lumbar fusion (PLF) and radiofrequency neurotomy (RFN) cause injury to these muscles affecting their function. However, evaluating multifidus function using traditional biomechanical methods is challenging due to its unique anatomical features. The change in muscle shear modulus during contraction has been corrected to force generation for several skeletal muscles. Therefore, the change in shear modulus can be used to quantify muscle contraction. The objective of this study was to evaluate multifidus dysfunction by comparing changes in shear modulus during muscle contraction in healthy individuals and patients who received RFN and PLF in the lumbar spine. We used our recently developed protocol which consists of measuring changes of multifidus shear modulus at lying prone, sitting up, and sitting up with the arms lifted. In healthy individuals, the median multifidus shear modulus increased progressively from prone, sitting, and sitting with arms raised: 18.55 kPa, 27.14 kPa, and 38.45 kPa, respectively. A moderate increase in shear modulus for these body positions was observed in PLF patients: 9.81 kPa, 17.26 kPa, and 21.85 kPa. In RFN patients, the shear modulus remained relatively constant: 14.44 kPa, 16.57 kPa, and 17.26 kPa. Overall, RFN and PLF caused a reduction in the contraction of multifidus muscles. However, the contraction of multifidus muscle slightly increased during multifidus activation in PLF patients, while it did not change in RFN patients. These preliminary measurements suggest that the proposed protocol using SWE can provide important information about the function of individual spine muscles to guide the design and evaluation of post-surgical rehabilitation protocols.

This content is only available via PDF.
You do not currently have access to this content.