Graphical Abstract Figure

Investigating variations in cerebral aneurysm hemodynamics due to coil embolization in three patient-specific geometries.

Graphical Abstract Figure

Investigating variations in cerebral aneurysm hemodynamics due to coil embolization in three patient-specific geometries.

Close modal

Abstract

A cerebral aneurysm is a weakened area in the wall of a blood vessel within the brain that causes the vessel to bulge outwards. The choice of treatment depends on various factors including the size and location of the aneurysm and the risk of rupture, and should be tailored to individual situations rather than following a universal approach due to their variability among individuals. This approach provides the possibility of choosing precise treatment plans that are proper for each patient’s circumstances. The utilization of computational fluid dynamics (CFD) allows for the prediction of after-surgery hemodynamic changes before any surgical approach. The goal of this research was to investigate the flow characteristics and hemodynamic parameters in cerebral arteries before and after endovascular embolization treatments using CFD in three patient-specific geometries with at least one aneurysm at the middle cerebral artery’s bifurcation. To model the coiling, the computational domain was divided into two fluid domains, a general fluid domain consisting of the parent arteries and a porous domain inside the aneurysm. CFD modeling was conducted to simulate blood flow in pre- and postcoiling scenarios. Results showed that the coiling model with different porosity values led to a redirection of blood flow away from the aneurysm sac. Additionally, changes in shear stress indicated potential alterations in susceptibility to vascular remodeling. In conclusion, these findings indicated that utilizing CFD modeling for simulating blood flow in patient-specific cerebral arteries could be utilized to predict hemodynamic parameters before any treatment.

References

1.
Chalouhi
,
N.
,
Hoh
,
B. L.
, and
Hasan
,
D.
,
2013
, “
Review of Cerebral Aneurysm Formation, Growth, and Rupture
,”
Stroke
,
44
(
12
), pp.
3613
3622
.10.1161/STROKEAHA.113.002390
2.
Habibi
,
M. A.
,
Fakhfouri
,
A.
,
Mirjani
,
M. S.
,
Razavi
,
A.
,
Mortezaei
,
A.
,
Soleimani
,
Y.
,
Lotfi
,
S.
, et al..,
2024
, “
Prediction of Cerebral Aneurysm Rupture Risk by Machine Learning Algorithms: A Systematic Review and Meta-Analysis of 18,670 Participants
,”
Neurosurg. Rev.
,
47
(
1
), p.
34
.10.1007/s10143-023-02271-2
3.
Backes
,
D.
,
Vergouwen
,
M. D.
,
Velthuis
,
B. K.
,
van der Schaaf
,
I. C.
,
Bor
,
A. S. E.
,
Algra
,
A.
, and
Rinkel
,
G. J.
,
2014
, “
Difference in Aneurysm Characteristics Between Ruptured and Unruptured Aneurysms in Patients With Multiple Intracranial Aneurysms
,”
Stroke
,
45
(
5
), pp.
1299
1303
.10.1161/STROKEAHA.113.004421
4.
Ma
,
J.
,
Zheng
,
Y.
,
Li
,
P.
,
Zhou
,
T.
,
Sun
,
Z.
,
Ju
,
T.
, and
Li
,
A.
,
2023
, “
Risk Factors for the Rupture of Intracranial Aneurysms: A Systematic Review and Meta-Analysis
,”
Front. Neurol.
,
14
, p.
1268438
.10.3389/fneur.2023.1268438
5.
Chen
,
Y.
,
Wu
,
J.
,
Yuan
,
W.
,
Mai
,
W.
, and
Li
,
H.
,
2024
, “
The Rupture Risk of Intracranial Saccular Aneurysm: A Case—Control Study Based on a Three-Dimensional Computed Tomography Angiography Model
,”
Quant. Imaging Med. Surg.
,
14
(
5
), pp.
3339
3349
.10.21037/qims-23-1694
6.
Li
,
Y.
,
Zhu
,
Y.
,
Liu
,
Y.
,
Li
,
G.
, and
Qu
,
X.
,
2024
, “
Comparative Study of the Diagnostic Value of Zero-Echo-Time Magnetic Resonance Angiography With Time-of-Flight Magnetic Resonance Angiography for Intracranial Aneurysm
,”
J. Comput. Assisted Tomogr.
,
48
(
1
), pp.
169
174
.10.1097/RCT.0000000000001518
7.
Lu
,
Y.
,
Wang
,
C.
,
Bao
,
Y.
,
Huang
,
L.
,
Lu
,
G.
, and
Li
,
Y.
,
2024
, “
Association Between Intracranial Aneurysm Wall Enhancement and Intracranial Atherosclerotic Plaque: A Cross-Sectional Study Using High-Resolution Vessel Wall Imaging
,”
Quant. Imaging Med. Surg.
,
14
(
2
), pp.
1553
1563
.10.21037/qims-23-1025
8.
Meyer
,
R. M.
,
Grandhi
,
R.
,
Lim
,
D. H.
,
Salah
,
W. K.
,
McAvoy
,
M.
,
Abecassis
,
Z. A.
,
Bonow
,
R. H.
, et al.,
2024
, “
A Comparison of Computed Tomography Angiography and Digital Subtraction Angiography for the Diagnosis of Penetrating Cerebrovascular Injury: A Prospective Multicenter Study
,”
J. Neurosurg.
,
141
(
2
), pp.
306
309
.10.3171/2023.12.JNS232070
9.
Murayama
,
Y.
,
Fujimura
,
S.
,
Suzuki
,
T.
, and
Takao
,
H.
,
2019
, “
Computational Fluid Dynamics as a Risk Assessment Tool for Aneurysm Rupture
,”
Neurosurg. Focus
,
47
(
1
), p.
E12
.10.3171/2019.4.FOCUS19189
10.
Taebi
,
A.
,
2022
, “
Deep Learning for Computational Hemodynamics: A Brief Review of Recent Advances
,”
Fluids
,
7
(
6
), p.
197
.10.3390/fluids7060197
11.
Belavadi
,
R.
,
Gudigopuram
,
S. V. R.
,
Raguthu
,
C. C.
,
Gajjela
,
H.
,
Kela
,
I.
,
Kakarala
,
C. L.
,
Hassan
,
M.
, and
Sange
,
I.
,
2021
, “
Surgical Clipping Versus Endovascular Coiling in the Management of Intracranial Aneurysms
,”
Cureus
,
13
(
12
) p.
e20478
.10.7759/cureus.20478
12.
Tang
,
A. Y.-S.
,
Chung
,
W.-C.
,
Liu
,
E. T.-Y.
,
Qu
,
J.-Q.
,
Tsang
,
A. C.-O.
,
Leung
,
G. K.-K.
,
Leung
,
K.-M.
, et al.,
2015
, “
Computational Fluid Dynamics Study of Bifurcation Aneurysms Treated With Pipeline Embolization Device: Side Branch Diameter Study
,”
J. Med. Biol. Eng.
,
35
(
3
), pp.
293
304
.10.1007/s40846-015-0046-3
13.
Kim
,
J. H.
,
Han
,
H.
,
Moon
,
Y.-J.
,
Suh
,
S.
,
Kwon
,
T.-H.
,
Kim
,
J. H.
,
Chong
,
K.
, et al.,
2020
, “
Hemodynamic Features of Microsurgically Identified, Thin-Walled Regions of Unruptured Middle Cerebral Artery Aneurysms Characterized Using Computational Fluid Dynamics
,”
Neurosurgery
,
86
(
6
), pp.
851
859
.10.1093/neuros/nyz311
14.
Cho
,
K.-C.
,
Yang
,
H.
,
Kim
,
J.-J.
,
Oh
,
J. H.
, and
Kim
,
Y. B.
,
2020
, “
Prediction of Rupture Risk in Cerebral Aneurysms by Comparing Clinical Cases With Fluid–Structure Interaction Analyses
,”
Sci. Rep.
,
10
(
1
), p.
18237
.10.1038/s41598-020-75362-5
15.
Jansen
,
I.
,
Schneiders
,
J.
,
Potters
,
W.
,
Van Ooij
,
P.
,
Van Den Berg
,
R.
,
Van Bavel
,
E.
,
Marquering
,
H.
, et al.,
2014
, “
Generalized Versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics
,”
Am. J. Neuroradiol.
,
35
(
8
), pp.
1543
1548
.10.3174/ajnr.A3901
16.
Sato
,
K.
,
Matsumoto
,
Y.
,
Tominaga
,
T.
,
Satow
,
T.
,
Iihara
,
K.
, and
Sakai
,
N.
,
2020
, “
Complications of Endovascular Treatments for Brain Arteriovenous Malformations: A Nationwide Surveillance
,”
Am. J. Neuroradiology
,
41
(
4
), pp.
669
675
.10.3174/ajnr.A6470
17.
Davidson
,
H.
,
Scardino
,
B.
,
Hollingsworth
,
L.
,
Thibbotuwawa Gamage
,
P.
, and
Taebi
,
A.
,
2023
, “
A Comparative Study of Middle Cerebral Artery Hemodynamics Pre- and Post-Clipping of Cerebral Aneurysm
,”
ASME
Paper No. IMECE2023-112822.10.1115/IMECE2023-112822
18.
Hong
,
L. S.
,
Adib
,
M. A. H. M.
,
Abdullah
,
M. S.
, and
Hassan
,
R.
,
2020
, “
Qualitative and Quantitative Comparison of Hemodynamics Between MRI Measurement and CFD Simulation on Patient-Specific Cerebral Aneurysm–A Review
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
68
(
2
), pp.
112
123
.10.37934/arfmts.68.2.112123
19.
Schena
,
M.
,
Testa
,
F.
,
Bozzetto
,
M.
,
Remuzzi
,
A.
,
Lanterna
,
L. A.
, and
Lanzarone
,
E.
,
2024
, “
A CFD-Based Framework to Evaluate Surgical Alternatives in Cerebral Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.: Imaging Visualization
,
12
(
1
), p.
2325351
.10.1080/21681163.2024.2325351
20.
Davidson
,
H.
,
Scardino
,
B.
,
Gamage
,
P. T.
, and
Taebi
,
A.
,
2024
, “
Variations of Middle Cerebral Artery Hemodynamics Due to Aneurysm Clipping Surgery
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
7
(
1
), p.
011008
.10.1115/1.4063204
21.
Ishida
,
F.
,
Tsuji
,
M.
,
Tanioka
,
S.
,
Tanaka
,
K.
,
Yoshimura
,
S.
, and
Suzuki
,
H.
,
2021
, “
Computational Fluid Dynamics for Cerebral Aneurysms in Clinical Settings
,”
Trends Cerebrovascular Surgery and Interventions
, Springer International Publishing AG, Cham, Switzerland, pp.
27
3210
. 10.1007/978-3-030-63453-7
22.
Umeda
,
Y.
,
Ishida
,
F.
,
Tsuji
,
M.
,
Furukawa
,
K.
,
Shiba
,
M.
,
Yasuda
,
R.
,
Toma
,
N.
, et al.,
2017
, “
Computational Fluid Dynamics (CFD) Using Porous Media Modeling Predicts Recurrence After Coiling of Cerebral Aneurysms
,”
PloS One
,
12
(
12
), p.
e0190222
.10.1371/journal.pone.0190222
23.
Kakalis
,
N. M.
,
Mitsos
,
A. P.
,
Byrne
,
J. V.
, and
Ventikos
,
Y.
,
2008
, “
The Haemodynamics of Endovascular Aneurysm Treatment: A Computational Modelling Approach for Estimating the Influence of Multiple Coil Deployment
,”
IEEE Trans. Med. Imaging
,
27
(
6
), pp.
814
824
.10.1109/TMI.2008.915549
24.
Yu
,
X.
,
Lu
,
G.
,
Wang
,
S.
,
Huang
,
L.
,
Ge
,
L.
,
Wan
,
J.
,
Di
,
R.
, et al.,
2016
, “
Computational Fluid Dynamics Analysis on Recurrence of Simple Coiling Intracranial Aneurysms With Remnant Neck
,”
Chin. Neurosurg. J.
,
2
(
1
), p. 30.10.1186/s41016-016-0050-7
25.
Sheidani
,
A.
,
Barzegar Gerdroodbary
,
M.
,
Poozesh
,
A.
,
Sabernaeemi
,
A.
,
Salavatidezfouli
,
S.
, and
Hajisharifi
,
A.
,
2022
, “
Influence of the Coiling Porosity on the Risk Reduction of the Cerebral Aneurysm Rupture: Computational Study
,”
Sci. Rep.
,
12
(
1
), p.
19082
.10.1038/s41598-022-23745-1
26.
Fillingham
,
P.
,
Bhathal
,
J. R.
,
Marsh
,
L. M.
,
Barbour
,
M. C.
,
Kurt
,
M.
,
Ionita
,
C. N.
,
Davies
,
J. M.
,
Aliseda
,
A.
, and
Levitt
,
M. R.
,
2023
, “
Improving Computational Fluid Dynamics Simulations of Coiled Aneurysms Using Finite Element Modeling
,”
medRxiv
, Cold Spring Harbor Laboratory Press, New York.10.1101/2023.02.27.23286512
27.
Wiśniewski
,
K.
,
Tomasik
,
B.
,
Tyfa
,
Z.
,
Reorowicz
,
P.
,
Bobeff
,
E. J.
,
Stefańczyk
,
L.
,
Posmyk
,
B. J.
, et al.,
2021
, “
Porous Media Computational Fluid Dynamics and the Role of the First Coil in the Embolization of Ruptured Intracranial Aneurysms
,”
J. Clin. Med.
,
10
(
7
), p.
1348
.10.3390/jcm10071348
28.
Otani
,
T.
,
Nakamura
,
M.
,
Fujinaka
,
T.
,
Hirata
,
M.
,
Kuroda
,
J.
,
Shibano
,
K.
, and
Wada
,
S.
,
2013
, “
Computational Fluid Dynamics of Blood Flow in Coil-Embolized Aneurysms: Effect of Packing Density on Flow Stagnation in an Idealized Geometry
,”
Med. Biol. Eng. Comput.
,
51
(
8
), pp.
901
910
.10.1007/s11517-013-1062-5
29.
Pozo
,
J. M.
,
Frangi
,
A. F.
, and
The @neurIST Consortium,
2017
, “
Database of Cerebral Artery Geometries Including Aneurysms at the Middle Cerebral Artery Bifurcation
,” accessed Jan. 6, 2025, https://figshare.shef.ac.uk/articles/dataset/Database_of_Cerebral_Artery_Geometries_including_Aneurysms_at_the_Middle_Cerebral_Artery_Bifurcation/4806910
30.
Soeda
,
A.
,
Sakai
,
N.
,
Sakai
,
H.
,
Iihara
,
K.
, and
Nagata
,
I.
,
2004
, “
Endovascular Treatment of Asymptomatic Cerebral Aneurysms: Anatomic and Technical Factors Related to Ischemic Events and Coil Stabilization
,”
Neurol. Med.-Chir.
,
44
(
9
), pp.
456
466
.10.2176/nmc.44.456
31.
Pierot
,
L.
, and
Wakhloo
,
A. K.
,
2013
, “
Endovascular Treatment of Intracranial Aneurysms: Current Status
,”
Stroke
,
44
(
7
), pp.
2046
2054
.10.1161/STROKEAHA.113.000733
32.
Taebi
,
A.
,
Sandler
,
R. H.
,
Kakavand
,
B.
, and
Mansy
,
H. A.
,
2019
, “
Extraction of Peak Velocity Profiles From Doppler Echocardiography Using Image Processing
,”
Bioengineering
,
6
(
3
), p.
64
.10.3390/bioengineering6030064
33.
Taebi
,
A.
,
Sandler
,
R. H.
,
Kakavand
,
B.
, and
Mansy
,
H. A.
,
2018
, “
Estimating Peak Velocity Profiles From Doppler Echocardiography Using Digital Image Processing
,” IEEE Signal Processing in Medicine and Biology Symposium (
SPMB
), Philadelphia, PA, Dec. 1, pp.
1
4
.10.1109/SPMB.2018.8615618
You do not currently have access to this content.