Graphical Abstract Figure

Visualization of the real carotid artery geometry, developed mesh, and simulation results: Pressure, Wall Shear Stress, and Strain Rate across Phase 1 (plasma) and Phase 2 (RBCs).

Graphical Abstract Figure

Visualization of the real carotid artery geometry, developed mesh, and simulation results: Pressure, Wall Shear Stress, and Strain Rate across Phase 1 (plasma) and Phase 2 (RBCs).

Close modal

Abstract

Numerical simulation of carotid artery bifurcation is essential for understanding blood flow dynamics in this complex region, aiding in identifying patterns associated with stress points and atherosclerosis risk. This information is valuable for developing preventive and therapeutic strategies for vascular diseases, as well as optimizing medical devices and surgical interventions. Simulations offer insights into blood flow at the carotid bifurcation, advancing biomedical research and clinical applications. Engineers use computational tools to address multiphase flow complexities, supporting efficient device design, quick simulations, and cost-effective exploration of fluid dynamics across phases. In this study, carotid artery hemodynamics were analyzed using a biphasic blood model (plasma and erythrocytes) via ansys software. Wall shear stresses (WSSs), strain rates (SRs), and red blood cells (RBCs) distribution were examined. Results showed that while strain rates were similar in both phases, wall shear stresses differed: plasma shear stress was about 7.17 times higher than that due to RBCs, and strain rates in plasma were approximately 2.2 times higher than in RBCs. Additionally, the pressure in RBCs was about 0.39% higher than in plasma. These findings highlight distinct hemodynamic behaviors in each phase, contributing to a deeper understanding of blood flow mechanics at the carotid bifurcation.

References

1.
Hasan
,
B.
,
Farah
,
M.
,
Nayfeh
,
T.
,
Amin
,
M.
,
Malandris
,
K.
,
Abd-Rabu
,
R.
,
Shah
,
S.
, et al.,
2022
, “
A Systematic Review Supporting the Society for Vascular Surgery Guidelines on the Management of Carotid Artery Disease
,”
J. Vasc. Surg.
,
75
(
1S
), pp.
99S
108S.e42
.10.1016/j.jvs.2021.06.001
2.
Lopes
,
D.
,
Puga
,
H.
,
Teixeira
,
J.
, and
Lima
,
R.
,
2020
, “
Blood Flow Simulations in Patient-Specific Geometries of the Carotid Artery: A Systematic Review
,”
J. Biomech.
,
111
, p.
110019
.10.1016/j.jbiomech.2020.110019
3.
Epp
,
R.
,
Schmid
,
F.
,
Weber
,
B.
, and
Jenny
,
P.
,
2020
, “
Predicting Vessel Diameter Changes to Up-Regulate Biphasic Blood Flow During Activation in Realistic Microvascular Networks
,”
Front. Physiol.
,
11
, p.
566303
.10.3389/fphys.2020.566303
4.
Villalobos-Lara
,
A. D.
,
Pérez
,
T.
,
Uribe
,
A. R.
,
Alfaro-Ayala
,
J. A.
,
Ramírez-Minguela
,
J. de J.
, and
Minchaca-Mojica
,
J. I.
,
2020
, “
CFD Simulation of Biphasic Flow, Mass Transport and Current Distribution in a Continuous Rotating Cylinder Electrode Reactor for Electrocoagulation Process
,”
J. Electroanal. Chem.
,
858
, p.
113807
.10.1016/j.jelechem.2019.113807
5.
Ahmed
,
F.
,
Yoshida
,
Y.
,
Wang
,
J.
,
Sakai
,
K.
, and
Kiwa
,
T.
,
2021
, “
Design and Validation of Microfluidic Parameters of a Microfluidic Chip Using Fluid Dynamics
,”
AIP Adv.
,
11
(
7
), p.
075224
.10.1063/5.0056597
6.
Bhatti
,
N.
,
Shah
,
S. I. A.
, and
Shahzad
,
A.
,
2019
, “
Numerical Analysis of Multiphase Blood Flow Within Carotid Artery & Bifurcation Using Mixture Model Theory
,” pp.
1
6
.10.1109/ICET48972.2019.8994649
7.
Ostrowski
,
Z.
,
Melka
,
B.
,
Adamczyk
,
W.
,
Rojczyk
,
M.
,
Golda
,
A.
, and
Nowak
,
A. J.
,
2016
, “
CFD Analysis of Multiphase Blood Flow Within Aorta and Its Thoracic Branches of Patient With Coarctation of Aorta Using Multiphase Euler–Euler Approach
,”
J. Phys.: Conf. Ser.
,
745
, p.
032112
.10.1088/1742-6596/745/3/032112
8.
Guerciotti
,
B.
,
Vergara
,
C.
,
Azzimonti
,
L.
,
Forzenigo
,
L.
,
Buora
,
A.
,
Biondetti
,
P.
, and
Domanin
,
M.
,
2016
, “
Computational Study of the Fluid-Dynamics in Carotids Before and After Endarterectomy
,”
J. Biomech.
,
49
(
1
), pp.
26
38
.10.1016/j.jbiomech.2015.11.009
9.
Rezazadeh
,
M.
, and
Ostadi
,
R.
,
2022
, “
Numerical Simulation of the Wall Shear Stress Distribution in a Carotid Artery Bifurcation
,”
J. Mech. Sci. Technol.
,
36
(
10
), pp.
5035
5046
.10.1007/s12206-022-0917-9
10.
Altundemir
,
S.
,
Lashkarinia
,
S. S.
,
Pekkan
,
K.
, and
Uğuz
,
A. K.
,
2024
, “
Interstitial Flow, Pressure and Residual Stress in the Aging Carotid Artery Model in FEBio
,”
Biomech. Model. Mechanobiol.
,
23
(
1
), pp.
179
192
.10.1007/s10237-023-01766-7
11.
Wu
,
H.
,
Fu
,
R.
,
Yang
,
X.
,
Li
,
X.
, and
Wang
,
Z.
,
2023
, “
Numerical Study of Bifurcated Blood Flow in Three Different Blood Viscosity Models
,”
J. Shanghai Jiaotong Univ. Sci.
,
28
(
4
), pp.
450
458
.10.1007/s12204-022-2512-8
12.
Jung
,
J.
,
Hassanein
,
A.
, and
Lyczkowski
,
R. W.
,
2006
, “
Hemodynamic Computation Using Multiphase Flow Dynamics in a Right Coronary Artery
,”
Ann. Biomed. Eng.
,
34
(
3
), pp.
393
407
.10.1007/s10439-005-9017-0
13.
Jung
,
J.
,
Lyczkowski
,
R. W.
,
Panchal
,
C. B.
, and
Hassanein
,
A.
,
2006
, “
Multiphase Hemodynamic Simulation of Pulsatile Flow in a Coronary Artery
,”
J. Biomech.
,
39
(
11
), pp.
2064
2073
.10.1016/j.jbiomech.2005.06.023
14.
ANSYS, Inc.,
2020
, “
ANSYS Fluent Theory Guide
,” ANSYS, Inc., Canonsburg, PA, accessed Feb. 16, 2024, http://www.ansys.com
15.
Lisiane Ramires Meneses
, 2005, “
Implementação de um novo método para cálculo do plume rise em um modelo langragiano
,” Master's thesis, Universidade Federal de Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil.
16.
Badules
,
J.
,
Vidal
,
M.
,
Boné
,
A.
,
Gil
,
E.
, and
García-Ramos
,
F. J.
,
2020
, “
Biphasic Computational Fluid Dynamics Modelling of the Mixture in an Agricultural Sprayer Tank
,”
Molecules
,
25
(
8
), p.
1870
.10.3390/molecules25081870
17.
Bauersachsl
,
R. M.
,
Shaw
,
S. J.
,
Zeidler
,
A.
, and
Meiselmanl
,
H. J.
,
1989
, “
Red Blood Cell Aggregation and Blood Viscoelasticity in Poorly Controlled Type 2 Diabetes Mellitus
,”
Clin. Hemorheol. Microcirc.
,
9
(
6
), pp.
935
952
.
18.
Eloot
,
S.
,
De Wachter
,
D.
,
Tricht
,
I.
, and
Verdonck
,
P.
,
2002
, “
Computational Flow Modeling in Hollow-Fiber Dialyzers
,”
Artif. Organs
,
26
(
7
), pp.
590
599
.10.1046/j.1525-1594.2002.07081.x
19.
Seo
,
T.
,
Schachter
,
L. G.
, and
Barakat
,
A. I.
,
2005
, “
Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
444
456
.10.1007/s10439-005-2499-y
20.
Hartono
,
D.
,
Liu
,
Y.
,
Tan
,
P. L.
,
Then
,
X. Y. S.
,
Yung
,
L. Y. L.
, and
Lim
,
K. M.
,
2011
, “
On-Chip Measurements of Cell Compressibility Via Acoustic Radiation
,”
Lab Chip
,
11
(
23
), pp.
4072
4080
.10.1039/c1lc20687g
21.
Matthews
,
K.
,
Lamoureux
,
E. S.
,
Myrand-Lapierre
,
M. E.
,
Duffy
,
S. P.
, and
Ma
,
H.
,
2022
, “
Technologies for Measuring Red Blood Cell Deformability
,”
Lab Chip
,
22
, pp.
1254
1274
.10.1039/D1LC01058A
22.
Lee
,
W.
,
2013
, “
General Principles of Carotid Doppler Ultrasonography
,”
Ultrasonography
,
33
(
1
), pp.
11
17
.10.14366/usg.13018
23.
Chen
,
Y.
,
Yang
,
X.
,
Iskander
,
A. J.
, and
Wang
,
P.
,
2020
, “
On the Flow Characteristics in Different Carotid Arteries
,”
Phys. Fluids
,
32
(
10
), p.
101902
.10.1063/5.0022092
24.
Aaron
, 2013, “
Carotid Bifurcation
,” GrabCAD, Cambridge, MA, accessed Nov. 22, 2023, https://grabcad.com/library/carotid-bifurcation
25.
Zukas
,
J. A.
, and
Scheffler
,
D. R.
,
2000
, “
Practical Aspects of Numerical Simulations of Dynamic Events: Effects of Meshing
,”
Int. J. Impact Eng.
,
24
(
9
), pp.
925
945
.10.1016/S0734-743X(00)00012-9
26.
Schnetter
,
E.
,
Hawley
,
S. H.
, and
Hawke
,
I.
,
2004
, “
Evolutions in 3D Numerical Relativity Using Fixed Mesh Refinement
,”
Classical Quantum Gravity
,
21
(
6
), pp.
1465
1488
.10.1088/0264-9381/21/6/014
27.
ANSYS, Inc., 2016, “
ANSYS Fluent User's Guide
,” Canonsburg, PA, accessed Feb. 16, 2024, http://www.ansys.com
28.
Fuchs
,
F. D.
, and
Whelton
,
P. K.
,
2020
, “
High Blood Pressure and Cardiovascular Disease
,”
Hypertension
,
75
(
2
), pp.
285
292
.10.1161/HYPERTENSIONAHA.119.14240
29.
Urschel
,
K.
,
Tauchi
,
M.
,
Achenbach
,
S.
, and
Dietel
,
B.
,
2021
, “
Investigation of Wall Shear Stress in Cardiovascular Research and in Clinical Practice—From Bench to Bedside
,”
Int. J. Mol. Sci.
,
22
(
11
), p.
5635
.10.3390/ijms22115635
30.
Campbell
,
A. K.
,
Beaumont
,
A. J.
,
Hayes
,
L.
,
Herbert
,
P.
,
Gardner
,
D.
,
Ritchie
,
L.
, and
Sculthorpe
,
N.
,
2023
, “
Habitual Exercise Influences Carotid Artery Strain and Strain Rate, but Not Cognitive Function in Healthy Middle-Aged Females
,”
Eur. J. Appl. Physiol.
,
123
(
5
), pp.
1051
1066
.10.1007/s00421-022-05123-x
31.
Trejo-Soto
,
C.
, and
Hernández-Machado
,
A.
,
2022
, “
Normalization of Blood Viscosity According to the Hematocrit and the Shear Rate
,”
Micromachines (Basel)
,
13
(
3
), p.
357
.10.3390/mi13030357
You do not currently have access to this content.