Abstract

The primary goal of the current research paper is to investigate the mechanical and tribological behavior of biologically active glass materials consisting of 31B2O3–(20 − x) SiO2–24.5Na2O–24.5CaO and xSrO (in mol. %). The specimens were fabricated partly using biowaste material, in which silica and calcium oxide were derived from rice husks and egg shells, respectively. The produced specimens underwent immersion in simulated bodily fluid for a week to observe their bioactive response. The findings from Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses validated the existence of a hydroxyapatite (HA) layer on the specimen surfaces. Further, XRD data showed an increase in peak intensity after SrO was incorporated, suggesting that it played a supporting role in boosting bioactivity. The mechanical investigations indicated that the addition of SrO adversely affects both hardness and compression strength. The highest levels of hardness and compression strength were observed in borosilicate glass (BSG)-0, namely, 6.49 GPa and 73.81 MPa, respectively. Following the inclusion of SrO, these values decreased to 4.72 GPa and 35.03 MPa for BSG-5, respectively. The abrasion wear test demonstrated that BSG-5 had the highest wear rate, while BSG-0 exhibited the lowest wear rate among all specimens at a 30 mm track radius, consistent with the outcomes of mechanical tests. The heightened concentration of strontium correlated with amplified abrasion and erosion, leading to more significant damage in surrounding regions. Despite the tradeoff between enhanced bioactivity and diminished mechanical strength and wear resistance, incorporating strontium oxide makes the glass suitable for applications prioritizing bioactivity, such as bone filling and dental contexts.

References

1.
El-Meliegy
,
E.
, and
Van Noort
,
R.
,
2011
,
Glasses and Glass Ceramics for Medical Applications
,
Springer Science & Business Media
, Berlin.
2.
Hench
,
L. L.
,
1991
, “
Bioceramics: From Concept to Clinic. J Am Ceram Soc. 1993;72:93–98
,”
J. Am. Ceram. Soc.
,
74
(
7
), pp.
1487
1510
.10.1111/j.1151-2916.1991.tb07132.x
3.
Hench
,
L. L.
,
2006
, “
The Story of Bioglass®
,”
J. Mater. Sci. Mater. Med.
,
17
(
11
), pp.
967
978
.10.1007/s10856-006-0432-z
4.
Fu
,
H.
,
Rahaman
,
M. N.
,
Day
,
D. E.
, and
Huang
,
W.
,
2012
, “
Long-Term Conversion of 45S5 Bioactive Glass–Ceramic Microspheres in Aqueous Phosphate Solution
,”
J. Mater. Sci. Mater. Med.
,
23
(
5
), pp.
1181
1191
.10.1007/s10856-012-4605-7
5.
Xu
,
S.
,
Yang
,
X.
,
Chen
,
X.
,
Shao
,
H.
,
He
,
Y.
,
Zhang
,
L.
,
Yang
,
G.
, and
Gou
,
Z.
,
2014
, “
Effect of Borosilicate Glass on the Mechanical and Biodegradation Properties of 45S5-Derived Bioactive Glass-Ceramics
,”
J. Non-Cryst. Solids
,
405
, pp.
91
99
.10.1016/j.jnoncrysol.2014.09.002
6.
Jain
,
S.
,
Gujjala
,
R.
,
Azeem
,
P. A.
,
Ojha
,
S.
, and
Samudrala
,
R. K.
,
2022
, “
A Review on Mechanical and In-Vitro Studies of Polymer Reinforced Bioactive Glass-Scaffolds and Their Fabrication Techniques
,”
Ceram. Int.
,
48
(
5
), pp.
5908
5921
.10.1016/j.ceramint.2021.11.206
7.
Rahaman
,
M. N.
,
Day
,
D. E.
,
Bal
,
B. S.
,
Fu
,
Q.
,
Jung
,
S. B.
,
Bonewald
,
L. F.
, and
Tomsia
,
A. P.
,
2011
, “
Bioactive Glass in Tissue Engineering
,”
Acta Biomater.
,
7
(
6
), pp.
2355
2373
.10.1016/j.actbio.2011.03.016
8.
Huang
,
W.
,
Day
,
D. E.
,
Kittiratanapiboon
,
K.
, and
Rahaman
,
M. N.
,
2006
, “
Kinetics and Mechanisms of the Conversion of Silicate (45S5), Borate, and Borosilicate Glasses to Hydroxyapatite in Dilute Phosphate Solutions
,”
J. Mater. Sci. Mater. Med.
,
17
(
7
), pp.
583
596
.10.1007/s10856-006-9220-z
9.
Yang
,
X.
,
Zhang
,
L.
,
Chen
,
X.
,
Sun
,
X.
,
Yang
,
G.
,
Guo
,
X.
,
Yang
,
H.
,
Gao
,
C.
, and
Gou
,
Z.
,
2012
, “
Incorporation of B2O3 in CaO-SiO2-P2O5 Bioactive Glass System for Improving Strength of Low-Temperature Co-Fired Porous Glass Ceramics
,”
J. Non-Cryst. Solids
,
358
(
9
), pp.
1171
1179
.10.1016/j.jnoncrysol.2012.02.005
10.
Yao
,
A.
,
Wang
,
D.
,
Huang
,
W.
,
Fu
,
Q.
,
Rahaman
,
M. N.
, and
Day
,
D. E.
,
2007
, “
In Vitro Bioactive Characteristics of Borate‐Based Glasses With Controllable Degradation Behavior
,”
J. Am. Ceram. Soc.
,
90
(
1
), pp.
303
306
.10.1111/j.1551-2916.2006.01358.x
11.
Grabowski
,
P.
,
2009
, “
Physiology of Bone
,”
Calcium Bone Disord. Child. Adolesc.
,
16
, pp.
32
48
.10.1159/000223687
12.
Marie
,
P. J.
,
Hott
,
M.
,
Modrowski
,
D.
,
De Pollak
,
C.
,
Guillemain
,
J.
,
Deloffre
,
P.
, and
Tsouderos
,
Y.
,
2020
, “
An Uncoupling Agent Containing Strontium Prevents Bone Loss by Depressing Bone Resorption and Maintaining Bone Formation in Estrogen‐Deficient Rats
,”
J. Bone Miner. Res.
,
8
(
5
), pp.
607
615
.10.1002/jbmr.5650080512
13.
Baron
,
R.
, and
Tsouderos
,
Y.
,
2002
, “
In Vitro Effects of S12911-2 on Osteoclast Function and Bone Marrow Macrophage Differentiation
,”
Eur. J. Pharmacol.
,
450
(
1
), pp.
11
17
.10.1016/S0014-2999(02)02040-X
14.
Canalis
,
E.
,
Hott
,
M.
,
Deloffre
,
P.
,
Tsouderos
,
Y.
, and
Marie
,
P. J.
,
1996
, “
The Divalent Strontium Salt S12911 Enhances Bone Cell Replication and Bone Formation In Vitro
,”
Bone
,
18
(
6
), pp.
517
523
.10.1016/8756-3282(96)00080-4
15.
Bonnelye
,
E.
,
Chabadel
,
A.
,
Saltel
,
F.
, and
Jurdic
,
P.
,
2008
, “
Dual Effect of Strontium Ranelate: Stimulation of Osteoblast Differentiation and Inhibition of Osteoclast Formation and Resorption In Vitro
,”
Bone
,
42
(
1
), pp.
129
138
.10.1016/j.bone.2007.08.043
16.
Jain
,
S.
,
Gujjala
,
R.
,
Patel
,
S.
,
Samudrala
,
R. K.
,
Abdul Azeem
,
P.
, and
Ojha
,
S.
,
2022
, “
Mechanical and Tribological Study of Bioactive Borosilicate Glass Fabricated Partially From Natural Waste
,”
Recent Trends in Product Design and Intelligent Manufacturing Systems: Select Proceedings of IPDIMS 2021
,
Springer
, Singapore, pp.
513
521
.
17.
Kokubo
,
T.
, and
Takadama
,
H.
,
2006
, “
How Useful Is SBF in Predicting In Vivo Bone Bioactivity?
,”
Biomaterials
,
27
(
15
), pp.
2907
2915
.10.1016/j.biomaterials.2006.01.017
18.
Azat
,
S.
,
Sartova
,
Z.
,
Bekseitova
,
K.
, and
Askaruly
,
K.
,
2019
, “
Extraction of High-Purity Silica From Rice Husk Via Hydrochloric Acid Leaching Treatment
,”
Turk. J. Chem.
,
43
(
5
), pp.
1258
1269
.10.3906/kim-1903-53
19.
Filgueiras
,
M. R.
,
La Torre
,
G.
, and
Hench
,
L. L.
,
1993
, “
Solution Effects on the Surface Reactions of a Bioactive Glass
,”
J. Biomed. Mater. Res.
,
27
(
4
), pp.
445
453
.10.1002/jbm.820270405
20.
Kamitsos
,
E. I.
,
Karakassides
,
M. A.
, and
Chryssikos
,
G. D.
,
1987
, “
Vibrational Spectra of Magnesium-Sodium-Borate Glasses. 2. Raman and Mid-Infrared Investigation of the Network Structure
,”
J. Phys. Chem.
,
91
(
5
), pp.
1073
1079
.10.1021/j100289a014
21.
Liu
,
X.
,
Rahaman
,
M. N.
, and
Day
,
D. E.
,
2013
, “
Conversion of Melt-Derived Microfibrous Borate (13-93B3) and Silicate (45S5) Bioactive Glass in a Simulated Body Fluid
,”
J. Mater. Sci. Mater. Med.
,
24
(
3
), pp.
583
595
.10.1007/s10856-012-4831-z
22.
Verhoef
,
A. H.
, and
Den Hartog
,
H. W.
,
1995
, “
Structure and Dynamics of Alkali Borate Glasses: A Molecular Dynamics Study
,”
J. Non-Cryst. Solids
,
182
(
3
), pp.
235
247
.10.1016/0022-3093(94)00554-0
23.
Yadav
,
A. K.
, and
Singh
,
P.
,
2015
, “
A Review of the Structures of Oxide Glasses by Raman Spectroscopy
,”
RSC Adv.
,
5
(
83
), pp.
67583
67609
.10.1039/C5RA13043C
24.
Liu
,
D.-M.
,
Yang
,
Q.
,
Troczynski
,
T.
, and
Tseng
,
W. J.
,
2002
, “
Structural Evolution of Sol–Gel-Derived Hydroxyapatite
,”
Biomaterials
,
23
(
7
), pp.
1679
1687
.10.1016/S0142-9612(01)00295-2
25.
Rehman
,
I.
, and
Bonfield
,
W. J. J.
,
1997
, “
Characterization of Hydroxyapatite and Carbonated Apatite by Photo Acoustic FTIR Spectroscopy
,”
J. Mater. Sci. Mater. Med.
,
8
(
1
), pp.
1
4
.10.1023/A:1018570213546
26.
Agathopoulos
,
S.
,
Tulyaganov
,
D. U.
,
Ventura
,
J. M. G.
,
Kannan
,
S.
,
Saranti
,
A.
,
Karakassides
,
M. A.
, and
Ferreira
,
J. M. F.
,
2006
, “
Structural Analysis and Devitrification of Glasses Based on the CaO–MgO–SiO2 System With B2O3, Na2O, CaF2 and P2O5 Additives
,”
J. Non-Cryst. Solids
,
352
(
4
), pp.
322
328
.10.1016/j.jnoncrysol.2005.12.003
27.
Tiwari
,
B.
,
Dixit
,
A.
,
Kothiyal
,
G. P.
,
Pandey
,
M.
, and
Deb
,
S. K.
,
2007
, “
Preparation and Characterization of Phosphate Glasses Containing Titanium
,”
Barc Newsl.
,
285
(
1
), pp.
167
172
.https://api.semanticscholar.org/CorpusID:26885732
28.
Cheng
,
Z. H.
,
Yasukawa
,
A.
,
Kandori
,
K.
, and
Ishikawa
,
T.
,
1998
, “
FTIR Study on Incorporation of CO2 Into Calcium Hydroxyapatite
,”
J. Chem. Soc. Faraday Trans.
,
94
(
10
), pp.
1501
1505
.10.1039/a708581h
29.
Kaur
,
D.
,
Reddy
,
M. S.
, and
Pandey
,
O. P.
,
2020
, “
In-Vitro Bioactivity of Silicate-Phosphate Glasses Using Agriculture Biomass Silica
,”
J. Mater. Sci. Mater. Med.
,
31
, pp.
1
13
.10.1007/s10856-020-06402-9
30.
Huang
,
W.
,
Rahaman
,
M. N.
,
Day
,
D. E.
, and
Li
,
Y.
,
2006
, “
Mechanisms for Converting Bioactive Silicate, Borate, and Borosilicate Glasses to Hydroxyapatite in Dilute Phosphate Solution
,”
Phys. Chem. Glasses - J. Glass Sci. Technol. Part B
,
47
(
6
), pp.
647
658
.https://www.ingentaconnect.com/content/sgt/ejgst/2006/00000047/00000006/art00005
31.
Yin
,
H.
,
Yang
,
C.
,
Gao
,
Y.
,
Wang
,
C.
,
Li
,
M.
,
Guo
,
H.
, and
Tong
,
Q.
,
2018
, “
Fabrication and Characterization of Strontium-Doped Borate-Based Bioactive Glass Scaffolds for Bone Tissue Engineering
,”
J. Alloys Compd.
,
743
, pp.
564
569
.10.1016/j.jallcom.2018.01.099
32.
Arepalli
,
S. K.
,
Tripathi
,
H.
,
Hira
,
S. K.
,
Manna
,
P. P.
,
Pyare
,
R.
, and
Singh
,
S. P.
,
2016
, “
Enhanced Bioactivity, Biocompatibility and Mechanical Behavior of Strontium Substituted Bioactive Glasses
,”
Mater. Sci. Eng. C
,
69
, pp.
108
116
.10.1016/j.msec.2016.06.070
33.
Gaafar
,
M. S.
,
Marzouk
,
S. Y.
,
Zayed
,
H. A.
,
Soliman
,
L. I.
, and
El-Deen
,
A. H. S.
,
2013
, “
Structural Studies and Mechanical Properties of Some Borate Glasses Doped With Different Alkali and Cobalt Oxides
,”
Curr. Appl. Phys.
,
13
(
1
), pp.
152
158
.10.1016/j.cap.2012.07.007
34.
O'donnell
,
M. D.
, and
Hill
,
R. G.
,
2010
, “
Influence of Strontium and the Importance of Glass Chemistry and Structure When Designing Bioactive Glasses for Bone Regeneration
,”
Acta Biomater.
,
6
(
7
), pp.
2382
2385
.10.1016/j.actbio.2010.01.006
35.
Srivastava
,
A. K.
, and
Pyare
,
R.
,
2012
, “
Characterization of ZnO Substituted 45S5 Bioactive Glasses and Glass-Ceramics
,”
J. Mater. Sci. Res.
,
1
(
2
), p.
207
.10.5539/jmsr.v1n2p207
36.
Karakuzu-İkizler
,
B.
,
Terzioğlu
,
P.
,
Oduncu-Tekerek
,
B. S.
, and
Yücel
,
S.
,
2020
, “
Effect of Selenium Incorporation on the Structure and In Vitro Bioactivity of 45S5 Bioglass
,”
J. Aust. Ceram. Soc.
,
56
(
2
), pp.
697
709
.10.1007/s41779-019-00388-6
37.
Leenakul
,
W.
,
Pisitpipathsin
,
N.
,
Kantha
,
P.
,
Tawichai
,
N.
,
Tigunta
,
S.
,
Eitssayeam
,
S.
,
Rujijanagul
,
G.
,
Pengpat
,
K.
, and
Munpakdee
,
A.
,
2012
, “
Characteristics of 45S5 Bioglass-Ceramics Using Natural Raw Materials
,”
Adv. Mater. Res.
,
506
, pp.
174
177
.10.4028/www.scientific.net/AMR.506.174
38.
Hench
,
L. L.
, and
Kokubo
,
T.
,
1998
, “
Properties of Bioactive Glasses and Glass-Ceramics
,”
Handbook of Biomaterial Properties
, Springer, Berlin, pp.
355
363
.10.1007/978-1-4615-5801-9
39.
Hulbert
,
S. F.
,
1993
, “
The Use of Alumina and Zirconia in Surgical Implants
,”
An Introduction to Bioceramics
,
World Scientific
, Singapore, pp.
25
40
.
40.
Mondal
,
S.
,
Mondal
,
A.
,
Mandal
,
N.
,
Mondal
,
B.
,
Mukhopadhyay
,
S. S.
,
Dey
,
A.
, and
Singh
,
S.
,
2014
, “
Physico-Chemical Characterization and Biological Response of Labeo Rohita-Derived Hydroxyapatite Scaffold
,”
Bioprocess Biosyst. Eng.
,
37
(
7
), pp.
1233
1240
.10.1007/s00449-013-1095-z
41.
Gerhardt
,
L. C.
, and
Boccaccini
,
A. R.
,
2010
, “
Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering
,”
Materials (Basel)
,
3
(
7
), pp.
3867
3910
.10.3390/ma3073867
42.
Lee
,
K. Y. S.
,
Chin
,
K. M. C.
,
Singh
,
R.
,
Tan
,
C. Y.
,
Teng
,
W. D.
, and
Sopyan
,
I.
,
2012
, “
Characterization of Forsterite Bioceramics
,”
Adv. Mater. Res.
,
576
, pp.
195
198
.10.4028/www.scientific.net/AMR.576.195
43.
Wang
,
X. J.
,
Chen
,
X. B.
,
Hodgson
,
P. D.
, and
Wen
,
C.
,
2006
, “
Elastic Modulus and Hardness of Cortical and Trabecular Bovine Bone Measured by Nanoindentation
,”
Trans. Nonferrous Met. Soc. China
,
16
, pp.
s744
s748
.10.1016/S1003-6326(06)60293-8
44.
Dziaduszewska
,
M.
, and
Zieliński
,
A.
,
2021
, “
Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications
,”
Materials (Basel)
,
14
(
4
), p.
712
.10.3390/ma14040712
45.
Jain
,
S.
,
Gujjala
,
R.
,
Abdul Azeem
,
P.
,
Samudrala
,
R. K.
, and
Ojha
,
S.
,
2023
, “
A Study on Mechanical and Tribological Properties of Eco-Friendly Synthesized ZrO2-Doped Borosilicate Glasses
,”
J. Mech. Behav. Biomed. Mater.
,
147
, p.
106150
.10.1016/j.jmbbm.2023.106150
46.
Patel
,
S.
,
Samudrala
,
R. K.
,
Palakurthy
,
S.
,
Manavathi
,
B.
,
Gujjala
,
R.
, and
Abdul Azeem
,
P.
,
2022
, “
In Vitro Evaluation and Mechanical Studies of MgO Added Borophosphate Glasses for Biomedical Applications
,”
Ceram. Int.
,
48
(
9
), pp.
12625
12634
.10.1016/j.ceramint.2022.01.130
You do not currently have access to this content.