Abstract

This research aims to design and develop a novel polyurethane elastomer (PUE) material with potential for biomedical optical applications. The study investigates the influence of hard segment (HS) content on transparency and tensile strength to optimize optical and mechanical properties. A one-step polymerization method is employed to synthesize a series of PUEs based on polyester, poly (3-methyl-1,5-pentandioladipate) (PMPA), diisocyanate (4,4-methylene bis (phenyl isocyanate) (MDI)), and the chain extender 1,4 butanediol (BD). By varying the ratios of PMPA/BD/MDI, PUE samples with different HS concentrations are synthesized. Analytical techniques including infrared spectroscopy, refractometer, UV/visible spectrophotometer, and tensile tests confirm the chemical structure of the synthesized PMPAPUE materials and investigate refractive indices (n), transmission spectra, and Young's modulus (YM), respectively. Films (PUE-1, PUE-2, and PUE-3) prepared using solvent-casting techniques exhibit varying optical and mechanical properties. PUE-1, with low HS content, demonstrates excellent transparency, with n = 1.59 and 89.63% of total transmitted light, and possesses excellent elastic properties with a YM of 10.654 MPa and a high strain value of S = 303.7%, meeting lens material requirements, promising for biomedical optical applications. Conversely, PUE-2 and PUE-3, with high HS content, are translucent and stiffer materials exhibiting higher YM, suitable for polymer processing, and tissue engineering applications. The optimization of the material's properties was achieved by carefully tailoring the composition of HS and soft segments, raw material ratios, and optimizing reaction conditions.

References

1.
Deodhar
,
T.
,
Nugay
,
N.
,
Nugay
,
T.
,
Patel
,
R.
,
Moggridge
,
G.
, and
Kennedy
,
J. P.
,
2022
, “
Synthesis of High‐Molecular‐Weight and Strength Polyisobutylene‐Based Polyurethane and Its Use for the Development of a Synthetic Heart Valve
,”
Macromol. Rapid Commun.
,
44
(
1
), p.
2200147
.10.1002/marc.202200147
2.
Kianpour
,
G.
,
Bagheri
,
R.
,
Pourjavadi
,
A.
, and
Ghanbar
,
H.
,
2022
, “
Synergy of Titanium Dioxide Nanotubes and Polyurethane Properties for Bypass Graft Application: Excellent Flexibility and Biocompatibility
,”
Mater. Des.
,
215
, p.
110523
.10.1016/j.matdes.2022.110523
3.
Zeng
,
Y.
,
Fan
,
L.
,
Deng
,
M.
,
Sun
,
P.
,
Zhang
,
B.
,
Zhang
,
Q.
,
Li
,
L.
, and
Xu
,
Z.
,
2019
, “
Development of High Refractive and High Water Content Polythiourethane/AA Hydrogels for Potential Artificial Cornea Implants
,”
Int. J. Polym. Mater. Polym. Biomater.
,
69
(
9
), pp.
580
591
.10.1080/00914037.2019.1596908
4.
Soleimanifar
,
F.
,
Mortazavi
,
Y.
,
Nadri
,
S.
, and
Soleimani
,
M.
,
2017
, “
Conjunctiva Derived Mesenchymal Stem Cell (CJMSCs) as a Potential Platform for Differentiation Into Corneal Epithelial Cells on Bioengineered Electrospun Scaffolds
,”
J. Biomed. Mater. Res., Part A
,
105
(
10
), pp.
2703
2711
.10.1002/jbm.a.36123
5.
Riehle
,
N.
,
Thude
,
S.
,
Kandelbauer
,
A.
,
Tovar
,
G.
, and
Lorenz
,
G.
,
2019
, “
Synthesis of Soft Polysiloxane-Urea Elastomers for Intraocular Lens Application
,”
J. Visualized Exp.
,
8
(
145
), p.
e58590
.10.3791/58590
6.
Jalie
,
M.
,
1994
,
The Principles of Ophthalmic Lenses
,
The Association of British Dispensing Opticians
,
London, UK
.
7.
Sankar
,
V.
,
Suresh Kumar
,
T.
, and
Panduranga Rao
,
K.
,
2004
, “
Preparation, Characterisation and Fabrication of Intraocular Lens From Photo Initiated Polymerised Poly (Methyl Methacrylate)
,”
Trends Biomater. Artif. Organs
,
17
(
2
), pp.
24
31
.https://go.gale.com/ps/i.do?p=HRCA&id=GALE%7CA165431689&v=2.1&it=r&userGroupName=anon%7E4688d116&aty=open-web-entry
8.
Gacek
,
M.
,
Wyslocki
,
J.
,
Gondro
,
J.
,
Badura
,
F.
, and
Letkiewicz
,
S.
,
2019
, “
Structure and Selected Properties of Intraocular Implants (PMMA, Acrylic)
,”
Mater. Plast.
,
56
(
3
), pp.
621
624
.10.37358/MP.19.3.5241
9.
Fannin
,
T. E.
, and
Grosvenor
,
T.
,
2013
,
Clinical Optics
,
Butterworth-Heinemann
, Waltham, MA.
10.
Migahed
,
M. D.
, and
Zidan
,
H. M.
,
2006
, “
Influence of UV-Irradiation on the Structure and Optical Properties of Polycarbonate Films
,”
Curr. Appl. Phys.
,
6
(
1
), pp.
91
96
.10.1016/j.cap.2004.12.009
11.
Grytsenko
,
K.
,
Kolomzarov
,
Y.
,
Lytvyn
,
P.
,
Kondratenko
,
O.
,
Sopinskyy
,
M.
,
Lebedyeva
,
I.
,
Niemczyk
,
A.
,
Baranovska
,
J.
,
Moszyński
,
D.
,
Villringer
,
C.
, and
Schrader
,
S.
,
2023
, “
Optical and Mechanical Properties of Thin PTFE Films, Deposited From a Gas Phase
,”
Macromol. Mater. Eng.
,
308
(
6
), p.
2200617
.10.1002/mame.202200617
12.
Myung
,
D.
,
Duhamel
,
P.-E.
,
Cochran
,
J. R.
,
Noolandi
,
J.
,
Ta
,
C. N.
, and
Frank
,
C. W.
,
2008
, “
Development of Hydrogel-Based Keratoprostheses: A Materials Perspective
,”
Biotechnol. Prog.
,
24
(
3
), pp.
735
741
.10.1021/bp070476n
13.
Riehle
,
N.
,
Thude
,
S.
,
Götz
,
T.
,
Kandelbauer
,
A.
,
Thanos
,
S.
,
Tovar
,
G. E.
, and
Lorenz
,
G.
,
2018
, “
Influence of PDMS Molecular Weight on Transparency and Mechanical Properties of Soft Polysiloxane-Urea-Elastomers for Intraocular Lens Application
,”
Eur. Polym. J.
,
101
, pp.
190
201
.10.1016/j.eurpolymj.2018.02.029
14.
MasterEyeAssociates, Austin, TX, 2024, “
Comparing Lens Materials
,” MasterEyeAssociates, Austin, TX, accessed Aug. 7, 2024, https://www.mastereyeassociates.com/eyeglass-lens-materials
15.
Bozukova
,
D.
,
Pagnoulle
,
C.
,
Jérôme
,
R.
, and
Jérôme
,
C.
,
2010
, “
Polymers in Modern Ophthalmic Implants-Historical Background and Recent Advances
,”
Mater. Sci. Eng.: R: Rep.
,
69
(
6
), pp.
63
83
.10.1016/j.mser.2010.05.002
16.
Ren
,
C.
,
Su
,
Z.
,
Su
,
Y.
, and
Wang
,
L.
,
2022
, “
Polyurethane Elastomer Layered Nanocomposite Material for Sports Grounds and the Preparation Method Thereof
,”
BioMed Res. Int.
,
2022
(
1
), p.
5152911
.10.1155/2022/5152911
17.
Lamba
,
M. K.
,
Woodhouse
,
A. K.
, and
Cooper
,
L. S.
,
1997
,
Polyurethanes in Biomedical Applications
,
CRC Press LLC
, Boca Raton, FL.
18.
Oh
,
J.
,
Kim
,
Y. K.
,
Hwang
,
S. H.
,
Kim
,
H. C.
,
Jung
,
J. H.
,
Jeon
,
C. H.
,
Kim
,
J.
, and
Lim
,
S. K.
,
2022
, “
Synthesis of Thermoplastic Polyurethanes Containing Bio-Based Polyester Polyol and Their Fiber Property
,”
Polymers
,
14
(
10
), p. 2033.10.3390/polym14102033
19.
Pavličević
,
J.
,
Špírková
,
M.
,
Jovičić
,
M.
,
Bera
,
O.
,
Poręba
,
R.
, and
Budinski-Simendić
,
J.
,
2013
, “
The Structure and Thermal Properties of Novel Polyurethane/Organoclay Nanocomposites Obtained by Pre-Polymerization
,”
Composites, Part B
,
45
(
1
), pp.
232
238
.10.1016/j.compositesb.2012.09.018
20.
Pattanayak
,
A.
, and
Jana
,
S. C.
,
2005
, “
Properties of Bulk-Polymerized Thermoplastic Polyurethane Nanocomposites
,”
Polymer
,
46
(
10
), pp.
3394
3406
.10.1016/j.polymer.2005.03.021
21.
Delebecq
,
E.
,
Pascault
,
J. P.
,
Boutevin
,
B.
, and
Ganachaud
,
F.
,
2013
, “
On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-Isocyanate Polyurethane
,”
Chem. Rev.
,
113
(
1
), pp.
80
118
.10.1021/cr300195n
22.
Santerre
,
J. P.
,
Woodhouse
,
K.
,
Laroche
,
G.
, and
Labow
,
R. S.
,
2005
, “
Understanding the Biodegradation of Polyurethanes: From Classical Implants to Tissue Engineering Materials
,”
Biomaterials
,
26
(
35
), pp.
7457
7470
.10.1016/j.biomaterials.2005.05.079
23.
Kavlock
,
K.
D.,
Pechar
,
T.
W.,
Hollinger
,
J.
O.,
Guelcher
,
S.
A., and
Goldstein
,
A. S.
,
2007
, “
Synthesis and Characterization of Segmented Poly(Esterurethane Urea) Elastomers for Bone Tissue Engineering
,”
Acta Biomater.
,
3
(
4
), pp.
475
484
.10.1016/j.actbio.2007.02.001
24.
Bueno‐Ferrer
,
C.
,
Hablot
,
E.
,
Perrin‐Sarazin
,
F.
,
Garrigós
,
M. C.
,
Jiménez
,
A.
, and
Averous
,
L.
,
2012
, “
Structure and Morphology of New Bio‐Based Thermoplastic Polyurethanes Obtained From Dimeric Fatty Acids
,”
Macromol. Mater. Eng.
,
297
(
8
), pp.
777
784
.10.1002/mame.201100278
25.
Hepburn
,
C.
, and
Hepburn
,
C.
,
1992
, “
Property-Structure Relationships in Polyurethanes
,”
Polyurethane Elastomers
,
Springer
,
Dordrecht
, The Netherlands, pp.
51
106
.
26.
Adhikari
,
R.
,
Gunatillake
,
P. A.
,
Meijs
,
G. F.
, and
McCarthy
,
S. J.
,
1999
, “
The Effect of Diisocyanate Isomer Composition on Properties and Morphology of Polyurethanes Based on 4,4′-Dicyclohexyl Methane Diisocyanate and Mixed Macrodiols (PDMS–PHMO
),”
J. Appl. Polym. Sci.
,
73
(
4
), pp.
573
582
.10.1002/(SICI)1097-4628(19990725)73:4<573::AID-APP13>3.0.CO;2-N
27.
Saralegi
,
A.
,
Etxeberria
,
A.
,
Fernández-d'Arlas
,
B.
,
Mondragon
,
I.
,
Eceiza
,
A.
, and
Corcuera
,
M. A.
,
2013
, “
Effect of H12MDI Isomer Composition on Mechanical and Physico-Chemical Properties of Polyurethanes Based on Amorphous and Semicrystalline Soft Segments
,”
Polym. Bull.
,
70
(
8
), pp.
2193
2210
.10.1007/s00289-013-0930-3
28.
Hundiwale
,
D. G.
,
Kapadi
,
U. R.
, and
Pandya
,
M. V.
,
1995
, “
Effect of Macroglycol Structure and Its Molecular Weight on Physicomechanical Properties of Polyurethanes
,”
J. Appl. Polym. Sci.
,
55
(
9
), pp.
1329
1333
.10.1002/app.1995.070550906
29.
Riehle
,
N.
,
Athanasopulu
,
K.
,
Kutuzova
,
L.
,
Götz
,
T.
,
Kandelbauer
,
A.
,
Tovar
,
G. E. M.
, and
Lorenz
,
G.
,
2021
, “
Influence of Hard Segment Content and Diisocyanate Structure on the Transparency and Mechanical Properties of Poly(Dimethylsiloxane)-Based Urea Elastomers for Biomedical Applications
,”
Polymers
,
13
(
2
), p.
212
.10.3390/polym13020212
30.
Kim
,
S. G.
, and
Lee
,
D. S.
,
2002
, “
Effect of Polymerization Procedure on Thermal and Mechanical Properties of Polyether Based Thermoplastic Polyurethanes
,”
Macromol. Res.
,
10
(
6
), pp.
365
368
.10.1007/BF03218331
31.
Ahn
,
T. O.
,
Choi
,
L. S.
,
Jeong
,
H. M.
, and
Cho
,
K.
,
1993
, “
Thermal and Mechanical Properties of Thermoplastic Polyurethane Elastomers From Different Polymerization Methods
,”
Polym. Int.
,
31
(
4
), pp.
329
333
.10.1002/pi.4990310404
32.
Harrell
,
L. L.
, Jr.
,
1969
, “
Segmented Polyurethans. Properties as a Function of Segment Size and Distribution
,”
Macromolecules
,
2
(
6
), pp.
607
612
.10.1021/ma60012a008
33.
Pattamaprom
,
C.
,
Wu
,
C.-H.
,
Chen
,
P.-H.
,
Huang
,
Y.-L.
,
Ranganathan
,
P.
,
Rwei
,
S.-P.
, and
Chuan
,
F.-S.
,
2020
, “
Solvent-Free One-Shot Synthesis of Thermoplastic Polyurethane Based on Bio-Poly(1,3-Propylene Succinate) Glycol With Temperature-Sensitive Shape Memory Behavior
,”
ACS Omega
,
5
(
8
), pp.
4058
4066
.10.1021/acsomega.9b03663
34.
Abbas
,
I.
,
Al-Jumaily
,
A. M.
, and
Ramos
,
M.
,
2004
, “
An Improved Electroactive Polymer for Optical Applications
,”
Proc. SPIE
5385
, pp.
449
453
.10.1117/12.538722
35.
Al-Jumaily
,
A. M.
,
Abbas
,
I.
, and
Ramos
,
M.
,
2009
, “
Transparent Electroactive Films for Optical Applications
,”
J. Mater. Sci. Eng.
,
3
(
12
), pp.
11
16
.https://science24.com/paper/18804#gsc.tab=0
36.
Charlon
,
M.
,
Heinrich
,
B.
,
Matter
,
Y.
,
Couzigné
,
E.
,
Donnio
,
B.
, and
Avérous
,
L.
,
2014
, “
Synthesis, Structure and Properties of Fully Biobased Thermoplastic Polyurethanes, Obtained From a Diisocyanate Based on Modified Dimer Fatty Acids, and Different Renewable Diols
,”
Eur. Polym. J.
,
61
, pp.
197
205
.10.1016/j.eurpolymj.2014.10.012
37.
Garcia
,
D. M. G.
,
Jurado
,
L. T.
,
Gallegos
,
J. R.
, and
Rodríguez-Lorenzo
,
M. L.
,
2017
, “
Novel Non-Cytotoxic, Bioactive and Biodegradable Hybrid Materials Based on Polyurethanes/TiO2 for Biomedical Applications
,”
Mater. Sci. Eng.: C
,
75
, pp.
375
384
.10.1016/j.msec.2017.02.041
38.
Su
,
J.
,
Zhang
,
Q.
,
Wang
,
P.-C.
,
MacDiarmid
,
A. G.
, and
Wynne
,
K. J.
,
1998
, “
Preparation and Characterization of Electrostrictive Polyurethane Films With Conductive Polymer Electrodes
,”
Polym. Adv. Technol.
,
9
(
6
), pp.
317
321
.10.1002/(SICI)1099-1581(199806)9:6<317::AID-PAT758>3.0.CO;2-Y
39.
Guan
,
S.
,
2003
, “
Common Questions on 100% Solids Polyurethane Coatings
,” Coatings World, Montvale, NJ, accessed Aug. 7, 2024, http:/www.gltechnologiescorp.com/gltech/uploads/2015/10/tech_coatingsworld2003.pdf
40.
Fried
,
J. R.
,
2014
,
Polymer Science and Technology
,
Prentice Hall
, Upper Saddle River, NJ.
41.
Saunders
,
J. H.
, and
Frisch
,
K. C.
,
1962
,
Polyurethanes. Chemistry and Technology
,
Interscience Publishers
, John Wiley & Sons, New York.
42.
Adnan
,
S.
,
Tuan Ismail
,
T. N. M.
,
Mohd Noor
,
N.
,
Nek Mat Din
,
N. S. M.
,
Hanzah
,
N. A.
,
Shoot Kian
,
Y.
, and
Abu Hassan
,
H.
,
2016
, “
Development of Flexible Polyurethane Nanostructured Biocomposite Foams Derived From Palm Olein-Based Polyol
,”
Adv. Mater. Sci. Eng.
,
2016
(
1
), p.
4316424
.10.1155/2016/4316424
43.
Liu
,
Z.
,
Wu
,
B.
,
Jiang
,
Y.
,
Lei
,
J.
,
Zhou
,
C.
,
Zhang
,
J.
, and
Wang
,
J.
,
2018
, “
Solvent-Free and Self-Catalysis Synthesis and Properties of Waterborne Polyurethane
,”
Polymer
,
143
, pp.
129
136
.10.1016/j.polymer.2018.04.010
44.
Nanaki
,
S.
,
Viziridou
,
A.
,
Zamboulis
,
A.
,
Kostoglou
,
M.
,
Papageorgiou
,
G. Z.
, and
Bikiaris
,
D. N.
,
2020
, “
New Biodegradable Poly(l-Lactide)-Block-Poly(Propylene Adipate) Copolymer Microparticles for Long-Acting Injectables of Naltrexone Drug
,”
Polymers
,
12
(
4
), p.
852
.10.3390/polym12040852
45.
Asefnejad
,
A.
,
Khorasani
,
M. T.
,
Behnamghader
,
A.
,
Farsadzadeh
,
B.
, and
Bonakdar
,
S.
,
2011
, “
Manufacturing of Biodegradable Polyurethane Scaffolds Based on Polycaprolactone Using a Phase Separation Method: Physical Properties and In Vitro Assay
,”
Int. J. Nanomed.
,
6
, pp.
2375
2384
.10.2147/IJN.S15586
46.
Chen
,
T.-K.
,
Tien
,
Y. I.
, and
Wei
,
K. H.
,
2000
, “
Synthesis and Characterization of Novel Segmented Polyurethane/Clay Nanocomposites
,”
Polymer
,
41
(
4
), pp.
1345
1353
.10.1016/S0032-3861(99)00280-3
47.
Lee
,
H. S.
,
Lee
,
N. W.
,
Ihm
,
D. W.
, and
Paik
,
K. H.
,
1994
, “
Segmental Orientation Behavior of Poly(Butyleneterephthalate-Co-Tetramethylene Oxide) Upon Uniaxial Deformation
,”
Macromolecules
,
27
(
15
), pp.
4364
4370
.10.1021/ma00093a043
48.
Briber
,
R. M.
, and
Thomas
,
E. L.
,
1985
, “
The Structure of MDI/BDO-Based Polyurethanes: Diffraction Studies on Model Compounds and Oriented Thin Films
,”
J. Polym. Sci., Polym. Phys. Ed.
,
23
(
9
), pp.
1915
1932
.10.1002/pol.1985.180230913
49.
Buckwalter
,
J. D.
,
Zhang
,
M.
,
Inglefield
,
D. L.
,
Moore
,
R. B.
, and
Long
,
T. E.
,
2013
, “
Synthesis and Characterization of Siloxane-Containing Poly(Urea Oxamide) Segmented Copolymers
,”
Polymer
,
54
(
18
), pp.
4849
4857
.10.1016/j.polymer.2013.07.025
50.
Lin
,
S. B.
,
Hwang
,
K. S.
,
Tsay
,
S. Y.
, and
Cooper
,
S. L.
,
1985
, “
Segmental Orientation Studies of Polyether Polyurethane Block Copolymers With Different Hard Segment Lengths and Distributions
,”
Colloid Polym. Sci.
,
263
(
2
), pp.
128
140
.10.1007/BF01412787
You do not currently have access to this content.