Abstract

Microneedle arrays (MNAs) are promising drug delivery tools aimed at lowering invasiveness and pain. Many design parameters are optimized to lower penetration force in MNAs. An important parameter is the microneedle width as that relates directly to the force required to penetrate the skin, the lower the width, the lower the penetration force needed. This research explored the use of auxetic structures known for having negative Poisson's ratio in the design of MNAs. As the needles are inserted, the compression on the needles causes their radial dimension to shrink instead of increasing as in positive Poisson's ratio structures. This study has shown a 25% reduction in penetration force due to using an auxetic structure instead of a conventional nonauxetic structure. The research employs additive manufacturing and soft molding to fabricate the MNAs. This study emphasizes the viability of using auxetic structures in MNA design.

References

1.
Xu
,
J.
,
Xu
,
D.
,
Xuan
,
X.
, and
He
,
H.
,
2021
, “
Advances of Microneedles in Biomedical Applications
,”
Molecules
,
26
(
19
), p.
5912
.10.3390/molecules26195912
2.
McAlister
,
E.
,
Kirkby
,
M.
,
Domínguez-Robles
,
J.
,
Paredes
,
A. J.
,
Anjani
,
Q. K.
,
Moffatt
,
K.
,
Vora
,
L. K.
, et al.,
2021
, “
The Role of Microneedle Arrays in Drug Delivery and Patient Monitoring to Prevent Diabetes Induced Fibrosis
,”
Adv. Drug Delivery Rev.
,
175
, p.
113825
.10.1016/j.addr.2021.06.002
3.
Ahmed Saeed Al-Japairai
,
K.
,
Mahmood
,
S.
,
Hamed, Almurisi
,
S.
,
Reddy Venugopal
,
J.
,
Rebhi, Hilles
,
A.
,
Azmana
,
M.
, and
Raman
,
S.
,
2020
, “
Current Trends in Polymer Microneedle for Transdermal Drug Delivery
,”
Int. J. Pharm.
,
587
, p.
119673
.10.1016/j.ijpharm.2020.119673
4.
Lee
,
K.
, and
Jung
,
H.
,
2012
, “
Drawing Lithography for Microneedles: A Review of Fundamentals and Biomedical Applications
,”
Biomaterials
,
33
(
30
), pp.
7309
7326
.10.1016/j.biomaterials.2012.06.065
5.
Amer
,
M.
, and
Chen
,
R. K.
,
2020
, “
Self-Adhesive Microneedles With Interlocking Features for Sustained Ocular Drug Delivery
,”
Macromol. Biosci.
,
20
(
6
), p.
2000089
.10.1002/mabi.202000089
6.
Lim
,
S. H.
,
Ng
,
J. Y.
, and
Kang
,
L.
,
2017
, “
Three-Dimensional Printing of a Microneedle Array on Personalized Curved Surfaces for Dual-Pronged Treatment of Trigger Finger
,”
Biofabrication
,
9
(
1
), p.
015010
.10.1088/1758-5090/9/1/015010
7.
Sharma
,
S.
,
El-Laboudi
,
A.
,
Reddy
,
M.
,
Jugnee
,
N.
,
Sivasubramaniyam
,
S.
,
El Sharkawy
,
M.
,
Georgiou
,
P.
,
Johnston
,
D.
, et al.,
2018
, “
A Pilot Study in Humans of Microneedle Sensor Arrays for Continuous Glucose Monitoring
,”
Anal. Methods
,
10
(
18
), pp.
2088
2095
.10.1039/C8AY00264A
8.
Sullivan
,
S. P.
,
Koutsonanos
,
D. G.
,
del Pilar Martin
,
M.
,
Lee
,
J. W.
,
Zarnitsyn
,
V.
,
Choi
,
S.-O.
,
Murthy
,
N.
,
Compans
,
R. W.
,
Skountzou
,
I.
, and
Prausnitz
,
M. R.
,
2010
, “
Dissolving Polymer Microneedle Patches for Influenza Vaccination
,”
Nat. Med.
,
16
(
8
), pp.
915
920
.10.1038/nm.2182
9.
Yang
,
P.
,
Chen
,
M.
,
Qin
,
W.
,
Shi
,
C.
,
Bai
,
X.
,
Quan
,
G.
,
Pan
,
X.
, and
Wu
,
C.
,
2021
, “
Effective Photothermal Therapy Mediated by Indocyanine Green Nanoparticle Tip-Loaded Microneedles to Enhance Checkpoint Inhibitor Immunotherapy for Melanoma Treatment
,”
ACS Appl. Nano Mater.
,
4
(
6
), pp.
5921
5931
.10.1021/acsanm.1c00832
10.
Yu
,
J.
,
Zhang
,
Y.
,
Ye
,
Y.
,
DiSanto
,
R.
,
Sun
,
W.
,
Ranson
,
D.
,
Ligler
,
F. S.
,
Buse
,
J. B.
, and
Gu
,
Z.
,
2015
, “
Microneedle-Array Patches Loaded With Hypoxia-Sensitive Vesicles Provide Fast Glucose-Responsive Insulin Delivery
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
27
), pp.
8260
8265
.10.1073/pnas.1505405112
11.
Amer
,
M.
,
Ni
,
X.
,
Xian
,
M.
, and
Chen
,
R. K.
,
2021
, “
Photo-Responsive Hydrogel Microneedles With Interlocking Control for Easy Extraction in Sustained Ocular Drug Delivery
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
5
(
1
), p.
011001
.10.1115/1.4052627
12.
Kjar
,
A.
, and
Huang
,
Y.
,
2019
, “
Application of Micro-Scale 3D Printing in Pharmaceutics
,”
Pharmaceutics
,
11
(
8
), p.
390
.10.3390/pharmaceutics11080390
13.
Loizidou
,
E. Z.
,
Inoue
,
N. T.
,
Ashton-Barnett
,
J.
,
Barrow
,
D. A.
, and
Allender
,
C. J.
,
2016
, “
Evaluation of Geometrical Effects of Microneedles on Skin Penetration by CT Scan and Finite Element Analysis
,”
Eur. J. Pharm. Biopharm.
,
107
, pp.
1
6
.10.1016/j.ejpb.2016.06.023
14.
O'Mahony
,
C.
,
2014
, “
Structural Characterization and In-Vivo Reliability Evaluation of Silicon Microneedles
,”
Biomed. Microdevices
,
16
(
3
), pp.
333
343
.10.1007/s10544-014-9836-6
15.
Lvov
,
V. A.
,
Senatov
,
F. S.
,
Veveris
,
A. A.
,
Skrybykina
,
V. A.
, and
Díaz, Lantada
,
A.
,
2022
, “
Auxetic Metamaterials for Biomedical Devices: Current Situation, Main Challenges, and Research Trends
,”
Materials
,
15
(
4
), p.
1439
.10.3390/ma15041439
16.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.10.1126/science.235.4792.1038
17.
Wojciechowski
,
K. W.
,
1989
, “
Two-Dimensional Isotropic System With a Negative Poisson Ratio
,”
Phys. Lett. A
,
137
(
1–2
), pp.
60
64
.10.1016/0375-9601(89)90971-7
18.
Evans
,
K. E.
,
1991
, “
Auxetic Polymers: A New Range of Materials
,”
Endeavour
,
15
(
4
), pp.
170
174
.10.1016/0160-9327(91)90123-S
19.
Baker
,
C. E.
,
2011
, “
Auxetic Spinal Implants: Consideration of Negative Poisson's Ratio in the Design of an Artificial Intervertebral Disc
,” The University of Toledo, Toledo, OH, accessed May 16, 2024, https://www.semanticscholar.org/paper/Auxetic-spinal-implants-%3A-consideration-of-negative-Baker/82f210a427aaf876921129583f0802037e1f63fb
20.
Amin
,
F.
,
Ali
,
M. N.
,
Ansari
,
U.
,
Mir
,
M.
,
Minhas
,
M. A.
, and
Shahid
,
W.
,
2015
, “
Auxetic Coronary Stent Endoprosthesis: Fabrication and Structural Analysis
,”
J. Appl. Biomater. Funct. Mater.
,
13
(
2
), pp.
e127
e135
.10.5301/jabfm.5000213
21.
Winter
,
W.
,
Klein
,
D.
, and
Karl
,
M.
,
2013
, “
Micromotion of Dental Implants: Basic Mechanical Considerations
,”
J. Med. Eng.
,
2013
, pp.
1
9
.10.1155/2013/265412
22.
eBay, 2024, “
Fractal Geometry of Nature by Benoit B. Mandelbrot (1982, Hardcover, Revised Edi 9780716711865)
,” eBay, H.B. Fenn and Company, Vancouver, BC, Canada, accessed May 16, 2024, https://www.ebay.com/itm/275623649387
23.
Mottram
,
S.
, and
Rosicky
,
J.
,
2017
, “
Cranial Remoulding Orthosis and Method of Manufacture Thereof
,” U.S. Patent and Trademark Office, Washington, DC, accessed May 16, 2024, https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017042550
24.
Panico
,
M.
,
Langella
,
C.
, and
Santulli
,
C.
,
2017
, “
Development of a Biomedical Neckbrace Through Tailored Auxetic Shapes
,”
Ital. J. Sci. Eng.
,
1
(
3
), pp.
105
117
.10.28991/ijse-01113
25.
Chen
,
Y.-W.
,
Wang
,
K.
,
Ho
,
C.-C.
,
Kao
,
C.-T.
,
Ng
,
H. Y.
, and
Shie
,
M.-Y.
,
2020
, “
Cyclic Tensile Stimulation Enrichment of Schwann Cell-Laden Auxetic Hydrogel Scaffolds Towards Peripheral Nerve Tissue Engineering
,”
Mater. Des.
,
195
, p.
108982
.10.1016/j.matdes.2020.108982
26.
Flamourakis
,
G.
,
Spanos
,
I.
,
Vangelatos
,
Z.
,
Manganas
,
P.
,
Papadimitriou
,
L.
,
Grigoropoulos
,
C.
,
Ranella
,
A.
, and
Farsari
,
M.
,
2020
, “
Laser‐Made 3D Auxetic Metamaterial Scaffolds for Tissue Engineering Applications
,”
Macromol. Mater. Eng.
,
305
(
7
), p.
2000238
.10.1002/mame.202000238
27.
Yan
,
Y.
,
Li
,
Y.
,
Song
,
L.
,
Zeng
,
C.
, and
Li
,
Y.
,
2017
, “
Pluripotent Stem Cell Expansion and Neural Differentiation in 3-D Scaffolds of Tunable Poisson's Ratio
,”
Acta Biomater.
,
49
, pp.
192
203
.10.1016/j.actbio.2016.11.025
28.
Song
,
L.
,
Ahmed
,
M. F.
,
Li
,
Y.
,
Zeng
,
C.
, and
Li
,
Y.
,
2018
, “
Vascular Differentiation From Pluripotent Stem Cells in 3-D Auxetic Scaffolds
,”
J. Tissue Eng. Regener. Med.
,
12
(
7
), pp.
1679
1689
.10.1002/term.2695
29.
Amer
,
M.
, and
Chen
,
R. K.
,
2020
, “
Hydrogel-Forming Microneedle Arrays for Sustained and Controlled Ocular Drug Delivery
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
3
(
4
), p.
041003
.10.1115/1.4048481
You do not currently have access to this content.