Abstract

This paper addresses the scarcity of comprehensive studies on the collective impact of various parametric lattice designs on mesostructure functionality. Focusing on optimizing the energy absorption of a serpentine mesostructure made using stereolithography, this research leverages a feedforward neural network to explore the interplay between line width, number of turns, and material properties on the energy absorbed by the structure. Compression simulations using a finite element model, covering a range of configurations, provided the dataset for neural network training. The resulting network was used to probe correlations between geometric variables, material, and energy absorption. Additionally, a neural network sensitivity analysis explored the impact of hidden layers and number of neurons on the network's performance, demonstrating the network's robustness. The optimized mesostructure configuration, identified by the neural network, maximized energy absorption. Using foundational mechanics of materials concepts, the discussion explains how the geometry and material of the cellular mesostructure affect structural stiffness.

References

1.
Parthasarathy
,
J.
,
Starly
,
B.
, and
Raman
,
S.
,
2011
, “
A Design for the Additive Manufacture of Functionally Graded Porous Structures With Tailored Mechanical Properties for Biomedical Applications
,”
J. Manuf. Process.
,
13
(
2
), pp.
160
170
.10.1016/j.jmapro.2011.01.004
2.
Xiong
,
J.
,
Mines
,
R.
,
Ghosh
,
R.
,
Vaziri
,
A.
,
Ma
,
L.
,
Ohrndorf
,
A.
,
Christ
,
H.-J.
, and
Wu
,
L.
,
2015
, “
Advanced Micro-Lattice Materials
,”
Adv. Eng. Mater.
,
17
(
9
), pp.
1253
1264
.10.1002/adem.201400471
3.
Frulloni
,
E.
,
Kenny
,
J. M.
,
Conti
,
P.
, and
Torre
,
L.
,
2007
, “
Experimental Study and Finite Element Analysis of the Elastic Instability of Composite Lattice Structures for Aeronautic Applications
,”
Compos. Struct.
,
78
(
4
), pp.
519
528
.10.1016/j.compstruct.2005.11.013
4.
Nazir
,
A.
,
Abate
,
K. M.
,
Kumar
,
A.
, and
Jeng
,
J.-Y.
,
2019
, “
A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
3489
3510
.10.1007/s00170-019-04085-3
5.
Schmitz
,
A.
,
2022
, “
Compression Energy Stored in an Additively Manufactured Mesostructure
,”
ASME
Paper No. IMECE2022-88493. 10.1115/IMECE2022-88493
6.
Schmitz
,
A.
,
2023
, “
Finite Element Simulation of Compressing an Additively Manufactured Mesostructure
,”
J. Eng. Sci. Med. Diagn. Ther.
,
7
(
2
), p.
024501
.10.1115/1.4063462
7.
Verpoort
,
P. C.
,
MacDonald
,
P.
, and
Conduit
,
G. J.
,
2018
, “
Materials Data Validation and Imputation With an Artificial Neural Network
,”
Comput. Mater. Sci.
,
147
, pp.
176
185
.10.1016/j.commatsci.2018.02.002
8.
Tho
,
K. K.
,
Swaddiwudhipong
,
S.
,
Liu
,
Z. S.
, and
Hua
,
J.
,
2004
, “
Artificial Neural Network Model for Material Characterization by Indentation
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
5
), pp.
1055
1062
.10.1088/0965-0393/12/5/019
9.
Muliana
,
A.
,
Haj-Ali
,
R. M.
,
Steward
,
R.
, and
Saxena
,
A.
,
2002
, “
Artificial Neural Network and Finite Element Modeling of Nanoindentation Tests
,”
Metall. Mater. Trans. A
,
33
(
7
), pp.
1939
1947
.10.1007/s11661-002-0027-3
10.
Qi
,
X.
,
Chen
,
G.
,
Li
,
Y.
,
Cheng
,
X.
, and
Li
,
C.
,
2019
, “
Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives
,”
Engineering
,
5
(
4
), pp.
721
729
.10.1016/j.eng.2019.04.012
11.
Bastian
,
A.
,
2022
, “
Andreas Bastian: Work
,” accessed Feb. 16, 2022, https://andreasbastian.com
12.
Büttrich
,
S.
,
2021
, “
3D Modeling With OpenSCAD-Part 1
,” LOW-COST 3D PRINTING, p.
83
.
13.
Madenci
,
E.
, and
Guven
,
I.
, 2015,
The Finite Element Method and Applications in Engineering Using ANSYS®,
Springer
, Berlin.
14.
Yang
,
Y.
,
Li
,
L.
, and
Zhao
,
J.
,
2019
, “
Mechanical Property Modeling of Photosensitive Liquid Resin in Stereolithography Additive Manufacturing: Bridging Degree of Cure With Tensile Strength and Hardness
,”
Mater. Des.
,
162
, pp.
418
428
.10.1016/j.matdes.2018.12.009
15.
Montgomery
,
D. C.
, and
Runger
,
G. C.
, 2010,
Applied Statistics and Probability for Engineers,
John Wiley & Sons
, Hoboken, NJ.
16.
Doodi
,
R.
, and
Gunji
,
B. M.
,
2023
, “
Prediction and Experimental Validation Approach to Improve Performance of Novel Hybrid Bio-Inspired 3D Printed Lattice Structures Using Artificial Neural Networks
,”
Sci. Rep.
,
13
(
1
), p.
7763
.10.1038/s41598-023-33935-0
You do not currently have access to this content.