Abstract

This study aims to delineate the biomechanical responses in both soft and hard tissues, alongside the interactions within the surrounding bone of a human skull subjected to clinical loadings generated by a miniscrew-assisted rapid palatal expansion (MARPE) device. Cone-beam computed tomography (CBCT) scans of a 20-year-old female skull were segmented. The skull bones were meticulously modeled to reconstruct a comprehensive three-dimensional (3D) model for finite-element analysis (FEA). A displacement of 0.125 mm was applied on each side (0.25 mm total) of the MARPE device to simulate one complete turn of the jackscrew. The outcomes revealed that the miniscrews experienced a maximum equivalent von Mises stress of 264.91 MPa. Notably, the separation of the midpalatal suture exhibited a quasi-parallel deformation with an average displacement of 0.247 mm and a standard deviation of 0.006,67 mm. The ratio of the rotational angle to the lateral displacement of the zygomaticomaxillary complex was 0.6436 degree/mm. No fracture of miniscrews was observed during the activation of one turn per day.

References

1.
Solano Mendoza
,
P.
,
Aceytuno Poch
,
P.
,
Solano Reina
,
E.
, and
Solano Mendoza
,
B.
,
2022
, “
Skeletal, Dentoalveolar and Dental Changes After ‘Mini-Screw Assisted Rapid Palatal Expansion’ Evaluated With Cone Beam Computed Tomography
,”
J. Clin. Med.
,
11
(
16
), p.
4652
.10.3390/jcm11164652
2.
Wilkat
,
M.
,
Liu
,
S.
,
Schwerter
,
M.
,
Schrader
,
F.
,
Saigo
,
L.
,
Karnatz
,
N.
,
Kübler
,
N. R.
, and
Rana
,
M.
,
2023
, “
A New Approach to Virtual Occlusion in Orthognathic Surgery Planning Using Mixed Reality—a Technical Note and Review of the Literature
,”
J. Pers. Med.
,
13
(
12
), p.
1709
.10.3390/jpm13121709
3.
Andrucioli
,
M. C. D.
, and
Matsumoto
,
M. A. N.
,
2020
, “
Transverse Maxillary Deficiency: Treatment Alternatives in Face of Early Skeletal Maturation
,”
Dental Press J. Orthod.
,
25
(
1
), pp.
70
79
.10.1590/2177-6709.25.1.070-079.bbo
4.
Wolford
,
L. M.
,
Movahed
,
R.
, and
Perez
,
D. E.
,
2014
, “
A Classification System for Conditions Causing Condylar Hyperplasia
,”
J. Oral Maxillofac. Surg.
,
72
(
3
), pp.
567
595
.10.1016/j.joms.2013.09.002
5.
Watted
,
N.
,
Lone
,
I. M.
,
Midlej
,
K.
,
Zohud
,
O.
,
Awadi
,
O.
,
Masarwa
,
S.
,
Watted
,
A.
, et al.,
2024
, “
The Complexity of Skeletal Transverse Dimension: From Diagnosis, Management, and Treatment Strategies to the Application of Collaborative Cross (CC) Mouse Model
,”
J. Func. Morphol. Kinesiol.
,
9
(
1
), p.
51
.10.3390/jfmk9010051
6.
Passanezi
,
E.
, and
Sant'Ana
,
A. C. P.
,
2019
, “
Role of Occlusion in Periodontal Disease
,”
Periodontology 2000
,
79
(
1
), pp.
129
150
.10.1111/prd.12251
7.
Angell
,
E.
,
1860
, “
Treatment of Irregularity of the Permanent or Adult Teeth
,”
Dent Cosmos
,
1
(
10
), pp.
540
544
.https://quod.lib.umich.edu/cgi/t/text/pageviewer-idx?c=dencos;cc=dencos;idno=acf8385.0001.001;node=acf8385.0001.001:210;frm=frameset;view=image;seq=590;page=root;size=s
8.
Guest
,
S. S.
,
McNamara
,
J. A.
,
Baccetti
,
T.
, and
Franchi
,
L.
,
2010
, “
Improving Class II Malocclusion as a Side-Effect of Rapid Maxillary Expansion: A Prospective Clinical Study
,”
Am. J. Orthod. Dentofac. Orthop.
,
138
(
5
), pp.
582
591
.10.1016/j.ajodo.2008.12.026
9.
Meazzini
,
M. C.
,
Torre
,
C.
,
Cappello
,
A.
,
Tintinelli
,
R.
,
De Ponti
,
E.
, and
Mazzoleni
,
F.
,
2021
, “
Long-Term Follow-Up of Late Maxillary Orthopedic Advancement With the Liou-Alternate Rapid Maxillary Expansion-Constriction Technique in Patients With Skeletal Class III Malocclusion
,”
Am. J. Orthod. Dentofac. Orthop.
,
160
(
2
), pp.
221
230
.10.1016/j.ajodo.2020.04.027
10.
Liu
,
S.
,
Xu
,
T.
, and
Zou
,
W.
,
2015
, “
Effects of Rapid Maxillary Expansion on the Midpalatal Suture: A Systematic Review
,”
EORTHO
,
37
(
6
), pp.
651
655
.10.1093/ejo/cju100
11.
Bazargani
,
F.
,
Feldmann
,
I.
, and
Bondemark
,
L.
,
2013
, “
Three-Dimensional Analysis of Effects of Rapid Maxillary Expansion on Facial Sutures and Bones: A Systematic Review
,”
Angle Orthod.
,
83
(
6
), pp.
1074
1082
.10.2319/020413-103.1
12.
Ahmida
,
A.
,
Mehta
,
S.
,
Amelemah
,
E.
,
Bashir
,
R.
,
Vich
,
M. L.
,
Tadinada
,
A.
,
Allareddy
,
V.
, and
Yadav
,
S.
,
2023
, “
Short-Term and Long-Term Effects of Miniscrew-Assisted and Conventional Rapid Palatal Expansion on the Cranial and Circummaxillary Sutures
,”
Am. J. Orthod. Dentofac. Orthop.
,
163
(
4
), pp.
e115
e126
.10.1016/j.ajodo.2023.01.007
13.
Angelieri
,
F.
,
Cevidanes
,
L. H. S.
,
Franchi
,
L.
,
Gonçalves
,
J. R.
,
Benavides
,
E.
, and
McNamara
,
J. A.
, Jr
,
2013
, “
Midpalatal Suture Maturation: Classification Method for Individual Assessment Before Rapid Maxillary Expansion
,”
Am. J. Orthod. Dentofac. Orthop.
,
144
(
5
), pp.
759
769
.10.1016/j.ajodo.2013.04.022
14.
Bazzani
,
M.
,
Cevidanes
,
L. H. S.
,
Al Turkestani
,
N. N.
,
Annarumma
,
F.
,
McMullen
,
C.
,
Ruellas
,
A. C. O.
,
Massaro
,
C.
, et al.,
2023
, “
Three-Dimensional Comparison of Bone-Borne and Tooth-Bone-Borne Maxillary Expansion in Young Adults With Maxillary Skeletal Deficiency
,”
Orthod. Craniofac. Res.
,
26
(
2
), pp.
151
162
.10.1111/ocr.12595
15.
Luebbert
,
J.
,
Ghoneima
,
A.
, and
Lagravère
,
M. O.
,
2016
, “
Skeletal and Dental Effects of Rapid Maxillary Expansion Assessed Through Three-Dimensional Imaging: A Multicenter Study
,”
Int. Orthod.
,
14
(
1
), pp.
15
31
.10.1016/j.ortho.2015.12.013
16.
Krüsi
,
M.
,
Eliades
,
T.
, and
Papageorgiou
,
S. N.
,
2019
, “
Are There Benefits From Using Bone-Borne Maxillary Expansion Instead of Tooth-Borne Maxillary Expansion? A Systematic Review With Meta-Analysis
,”
Prog. Orthod.
,
20
(
1
), p.
9
.10.1186/s40510-019-0261-5
17.
MacGinnis
,
M.
,
Chu
,
H.
,
Youssef
,
G.
,
Wu
,
K. W.
,
Machado
,
A. W.
, and
Moon
,
W.
,
2014
, “
The Effects of Micro-Implant Assisted Rapid Palatal Expansion (MARPE) on the Nasomaxillary Complex—A Finite Element Method (FEM) Analysis
,”
Prog. Orthod.
,
15
(
1
), p.
52
.10.1186/s40510-014-0052-y
18.
Lee
,
S.-R.
,
Lee
,
J.
,
Chung
,
D.-H.
, and
Lee
,
S.
,
2020
, “
Short-Term Impact of Microimplant-Assisted Rapid Palatal Expansion on the Nasal Soft Tissues in Adults: A Three-Dimensional Stereophotogrammetry Study
,”
Korean J. Orthod.
,
50
(
2
), p.
75
.10.4041/kjod.2020.50.2.75
19.
Lim
,
H.-M.
,
Park
,
Y.-C.
,
Lee
,
K.-J.
,
Kim
,
K.-H.
, and
Choi
,
Y. J.
,
2017
, “
Stability of Dental, Alveolar, and Skeletal Changes After Miniscrew-Assisted Rapid Palatal Expansion
,”
Korean J. Orthod.
,
47
(
5
), p.
313
.10.4041/kjod.2017.47.5.313
20.
Park
,
J. J.
,
Park
,
Y.-C.
,
Lee
,
K.-J.
,
Cha
,
J.-Y.
,
Tahk
,
J. H.
, and
Choi
,
Y. J.
,
2017
, “
Skeletal and Dentoalveolar Changes After Miniscrew-Assisted Rapid Palatal Expansion in Young Adults: A Cone-Beam Computed Tomography Study
,”
Korean J. Orthod.
,
47
(
2
), p.
77
.10.4041/kjod.2017.47.2.77
21.
Zong
,
C.
,
Tang
,
B.
,
Hua
,
F.
,
He
,
H.
, and
Ngan
,
P.
,
2019
, “
Skeletal and Dentoalveolar Changes in the Transverse Dimension Using Microimplant-Assisted Rapid Palatal Expansion (MARPE) Appliances
,”
Semin. Orthod.
,
25
(
1
), pp.
46
59
.10.1053/j.sodo.2019.02.006
22.
Mecenas
,
P.
,
Espinosa
,
D. G.
,
Cardoso
,
P. C.
, and
Normando
,
D.
,
2020
, “
Stainless Steel or Titanium Mini-Implants?
,”
Angle Orthod.
,
90
(
4
), pp.
587
597
.10.2319/081619-536.1
23.
Papadopoulos
,
M. A.
,
Papageorgiou
,
S. N.
, and
Zogakis
,
I. P.
,
2011
, “
Clinical Effectiveness of Orthodontic Miniscrew Implants: A Meta-Analysis
,”
J. Dent. Res.
,
90
(
8
), pp.
969
976
.10.1177/0022034511409236
24.
Papageorgiou
,
S. N.
,
Zogakis
,
I. P.
, and
Papadopoulos
,
M. A.
,
2012
, “
Failure Rates and Associated Risk Factors of Orthodontic Miniscrew Implants: A Meta-Analysis
,”
Am. J. Orthod. Dentofac. Orthop.
,
142
(
5
), pp.
577
595
.10.1016/j.ajodo.2012.05.016
25.
Lee
,
D.-W.
,
Park
,
J. H.
,
Moon
,
W.
,
Seo
,
H. Y.
, and
Chae
,
J.-M.
,
2021
, “
Effects of Bicortical Anchorage on Pterygopalatine Suture Opening With Microimplant-Assisted Maxillary Skeletal Expansion
,”
Am. J. Orthod. Dentofac. Orthop.
,
159
(
4
), pp.
502
511
.10.1016/j.ajodo.2020.02.013
26.
Ngan
,
P.
,
Nguyen
,
U. K.
,
Nguyen
,
T.
,
Tremont
,
T.
, and
Martin
,
C.
,
2018
, “
Skeletal, Dentoalveolar, and Periodontal Changes of Skeletally Matured Patients With Maxillary Deficiency Treated With Microimplant‐Assisted Rapid Palatal Expansion Appliances: A Pilot Study
,”
APOS Trends Orthod.
,
8
(
2
), pp.
71
85
.10.4103/apos.apos_27_18
27.
Cantarella
,
D.
,
Dominguez-Mompell
,
R.
,
Mallya
,
S. M.
,
Moschik
,
C.
,
Pan
,
H. C.
,
Miller
,
J.
, and
Moon
,
W.
,
2017
, “
Changes in the Midpalatal and Pterygopalatine Sutures Induced by Micro-Implant-Supported Skeletal Expander, Analyzed With a Novel 3D Method Based on CBCT Imaging
,”
Prog. Orthod.
,
18
(
1
), p.
34
.10.1186/s40510-017-0188-7
28.
Yoon
,
S.
,
Lee
,
D.-Y.
, and
Jung
,
S.-K.
,
2019
, “
Influence of Changing Various Parameters in Miniscrew-Assisted Rapid Palatal Expansion: A Three-Dimensional Finite Element Analysis
,”
Korean J. Orthod.
,
49
(
3
), p.
150
.10.4041/kjod.2019.49.3.150
29.
Lee
,
R. J.
,
Moon
,
W.
, and
Hong
,
C.
,
2017
, “
Effects of Monocortical and Bicortical Mini-Implant Anchorage on Bone-Borne Palatal Expansion Using Finite Element Analysis
,”
Am. J. Orthod. Dentofac. Orthop.
,
151
(
5
), pp.
887
897
.10.1016/j.ajodo.2016.10.025
30.
Pan
,
S.
,
Gao
,
X.
,
Sun
,
J.
,
Yang
,
Z.
,
Hu
,
B.
, and
Song
,
J.
,
2023
, “
Effects of Novel Microimplant-Assisted Rapid Palatal Expanders Manufactured by 3-Dimensional Printing Technology: A Finite Element Study
,”
Am. J. Orthod. Dentofac. Orthop.
,
164
(
5
), pp.
700
711
.10.1016/j.ajodo.2023.04.020
31.
Patiño
,
A. M. B.
,
Rodrigues
,
M. D. P.
,
Pessoa
,
R. S.
,
Rubinsky
,
S. Y.
,
Kim
,
K. B.
,
Soares
,
C. J.
, and
Almeida
,
G. D. A.
,
2024
, “
Biomechanical Behavior of Three Maxillary Expanders in Cleft Lip and Palate: A Finite Element Study
,”
Braz. Oral Res.
,
38
, p.
e010
.10.1590/1807-3107bor-2024.vol38.0010
32.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
,
Bauer
,
C.
, et al.,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
33.
Pan
,
C.-Y.
,
Liu
,
P.-H.
,
Tseng
,
Y.-C.
,
Chou
,
S.-T.
,
Wu
,
C.-Y.
, and
Chang
,
H.-P.
,
2019
, “
Effects of Cortical Bone Thickness and Trabecular Bone Density on Primary Stability of Orthodontic Mini-Implants
,”
J. Dent. Sci.
,
14
(
4
), pp.
383
388
.10.1016/j.jds.2019.06.002
34.
Ghoneima
,
A.
,
Abdel-Fattah
,
E.
,
Hartsfield
,
J.
,
El-Bedwehi
,
A.
,
Kamel
,
A.
, and
Kula
,
K.
,
2011
, “
Effects of Rapid Maxillary Expansion on the Cranial and Circummaxillary Sutures
,”
Am. J. Orthod. Dentofac. Orthop.
,
140
(
4
), pp.
510
519
.10.1016/j.ajodo.2010.10.024
35.
Ammar
,
H. H.
,
Ngan
,
P.
,
Crout
,
R. J.
,
Mucino
,
V. H.
, and
Mukdadi
,
O. M.
,
2011
, “
Three-Dimensional Modeling and Finite Element Analysis in Treatment Planning for Orthodontic Tooth Movement
,”
Am. J. Orthod. Dentofac. Orthop.
,
139
(
1
), pp.
e59
e71
.10.1016/j.ajodo.2010.09.020
36.
Chang
,
C.-J.
,
Chen
,
M.-Y.
,
Chang
,
C.-H.
, and
Chang
,
H.-C.
,
2023
, “
Investigation of the Role of Midpalatal and Circummaxillary Sutures in Bone-Anchored Rapid Maxillary Expansion Using a Verified Finite-Element Model
,”
Am. J. Orthod. Dentofac. Orthop.
,
163
(
2
), pp.
198
209
.10.1016/j.ajodo.2021.10.019
37.
Schwarcz
,
H. P.
,
Abueidda
,
D.
, and
Jasiuk
,
I.
,
2017
, “
The Ultrastructure of Bone and Its Relevance to Mechanical Properties
,”
Front. Phys.
,
5
, p.
39
.10.3389/fphy.2017.00039
38.
Benaissa
,
A.
,
Merdji
,
A.
,
Bendjaballah
,
M. Z.
,
Ngan
,
P.
, and
Mukdadi
,
O. M.
,
2020
, “
Stress Influence on Orthodontic System Components Under Simulated Treatment Loadings
,”
Comput. Methods Prog. Biomed.
,
195
, p.
105569
.10.1016/j.cmpb.2020.105569
39.
Chen
,
Y.
,
Pani
,
M.
,
Taddei
,
F.
,
Mazzà
,
C.
,
Li
,
X.
, and
Viceconti
,
M.
,
2014
, “
Large-Scale Finite Element Analysis of Human Cancellous Bone Tissue Micro Computer Tomography Data: A Convergence Study
,”
ASME J. Biomech. Eng.
,
136
(
10
), p.
101013
.10.1115/1.4028106
40.
Boukhlif
,
A.
,
Merdji
,
A.
,
Della
,
N.
,
Ould Chikh
,
E. B.
,
Mukdadi
,
O.
, and
Hillstrom
,
R.
,
2018
, “
Numerical Evaluation of Biomechanical Stresses in Dental Bridges Supported by Dental Implants
,”
J. Biomimetics, Biomater. Biomed. Eng.
,
37
, pp.
43
54
.10.4028/www.scientific.net/JBBBE.37.43
41.
Merdji
,
A.
,
Della
,
N.
,
Benaissa
,
A.
,
Bouiadjra
,
B.-A. B.
,
Serier
,
B.
,
Mootanah
,
R.
,
Muslih
,
I.
, and
Mukdadi
,
O. M.
,
2015
, “
Numerical Analysis of Dental Caries Effect on the Biomechanical Behavior of the Periodontal System
,”
ASME J. Nanotechnol. Eng. Med.
,
6
(
3
), p.
031004
.10.1115/1.4032689
42.
Shash
,
Y. H.
,
El-Wakad
,
M. T.
,
Eldosoky
,
M. A. A.
, and
Dohiem
,
M. M.
,
2023
, “
Evaluation of Stress and Strain on Mandible Caused Using ‘All-on-Four’ System From PEEK in Hybrid Prosthesis: Finite-Element Analysis
,”
Odontology
,
111
(
3
), pp.
618
629
.10.1007/s10266-022-00771-z
43.
De Lacerda Schickert
,
S.
,
Van Den Beucken
,
J. J. J. P.
,
Leeuwenburgh
,
S. C. G.
, and
Jansen
,
J. A.
,
2020
, “
Pre-Clinical Evaluation of Biological Bone Substitute Materials for Application in Highly Loaded Skeletal Sites
,”
Biomolecules
,
10
(
6
), p.
883
.10.3390/biom10060883
44.
Yoon
,
A.
,
Payne
,
J.
,
Suh
,
H.
,
Phi
,
L.
,
Chan
,
A.
, and
Oh
,
H.
,
2022
, “
A Retrospective Analysis of the Complications Associated With Miniscrew-Assisted Rapid Palatal Expansion
,”
AJO-DO Clin. Companion
,
2
(
5
), pp.
423
430
.10.1016/j.xaor.2022.08.001
45.
Morgan
,
E. F.
,
Unnikrisnan
,
G. U.
, and
Hussein
,
A. I.
,
2018
, “
Bone Mechanical Properties in Healthy and Diseased States
,”
Annu. Rev. Biomed. Eng.
,
20
(
1
), pp.
119
143
.10.1146/annurev-bioeng-062117-121139
46.
Gungor
,
M. N.
,
Ucok
,
I.
,
Kramer
,
L. S.
,
Dong
,
H.
,
Martin
,
N. R.
, and
Tack
,
W. T.
,
2005
, “
Microstructure and Mechanical Properties of Highly Deformed Ti–6Al–4V
,”
Mater. Sci. Eng.: A
,
410–411
, pp.
369
374
.10.1016/j.msea.2005.08.141
47.
Guglielmo
,
B.
,
Björn
,
L.
,
Rossano
,
M.
,
Bruno
,
D. L.
, and
Venugopal
,
A.
,
2023
, “
A Clinician's Perspective on Indications and Failures of Bone-Borne Maxillary Expanders
,”
Semin. Orthod.
, p.
S1073874623000567
.10.1053/j.sodo.2023.05.009
48.
Walter
,
A.
,
De La Iglesia
,
F.
,
Winsauer
,
H.
,
Ploder
,
O.
,
Wendl
,
B.
, and
Puigdollers Perez
,
A.
,
2023
, “
Evaluation of Expansion Forces of Five Pure Bone-Borne Maxillary Expander Designs Anchored With Orthodontic Mini-Implants: An In Vitro Study
,”
J. Orthod.
,
50
(
4
), pp.
335
343
.10.1177/14653125231152502
49.
Akyalcin
,
S.
, and
Alev
,
Y.
,
2023
, “
Clinical Advances in Maxillary Skeletal Expansion and Introduction of a New MARPE Concept
,”
J. Esthetic Restor. Dent.
,
35
(
1
), pp.
291
298
.10.1111/jerd.12994
50.
Cantarella
,
D.
,
Dominguez-Mompell
,
R.
,
Moschik
,
C.
,
Mallya
,
S. M.
,
Pan
,
H. C.
,
Alkahtani
,
M. R.
,
Elkenawy
,
I.
, and
Moon
,
W.
,
2018
, “
Midfacial Changes in the Coronal Plane Induced by Microimplant-Supported Skeletal Expander, Studied With Cone-Beam Computed Tomography Images
,”
Am. J. Orthod. Dentofac. Orthop.
,
154
(
3
), pp.
337
345
.10.1016/j.ajodo.2017.11.033
You do not currently have access to this content.