Abstract

U-Net network is widely used in the field of medical image segmentation. The automatic segmentation and detection of lung nodules can help in the early detection of lung cancer. Therefore, in this paper, to solve the problems of small proportion of nodules in computer tomography (CT) images, complex features, and insufficient segmentation accuracy, an improved U-Net network based on residual network and attention mechanism was proposed. The feature extraction part of Res select Kernel Contextual U-Net (RkcU-Net) network is based on Res2net, a variant of Resnet, and on which a feature extraction module with automatic selection of convolution kernel size is designed to perform multiscale convolution inside the feature layer to form perceptual fields of different sizes. This module selects the appropriate convolution kernel size to extract lung nodule features in the face of different fine-grained lung nodules. Second, the contextual supplementary (CS) block is designed to use the information of adjacent upper and lower layers to correct for the upper layer features, eliminating the discrepancy in the fusion of features at different levels. In this paper, the LUNA16 dataset was selected as the basis for lung nodule segmentation experiments. The method used in this dataset can achieve an intersection ratio (IoU) of 80.59% and a dice similarity coefficient (DSC) score of 89.25%. The network effectively improves the accuracy of lung nodule segmentation compared with other models. The results show that the method enhances the feature extraction ability of the network and improves the segmentation effect. In addition, the contribution of jump connections to information recovery should be noted.

References

1.
Li
,
R.
,
Xiao
,
C.
,
Huang
,
Y.
,
Hassan
,
H.
, and
Huang
,
B.
,
2022
, “
Deep Learning Applications in Computed Tomography Images for Pulmonary Nodule Detection and Diagnosis: A Review
,”
Diagnostics
,
12
(
2
), p.
298
.10.3390/diagnostics12020298
2.
Torres
,
E. L.
,
Fiorina
,
E.
,
Pennazio
,
F.
,
Peroni
,
C.
,
Saletta
,
M.
,
Camarlinghi
,
N.
,
Fantacci
,
M. E.
, and
Cerello
,
P.
,
2015
, “
Large Scale Validation of the M5 L Lung CAD on Heterogeneous CT Datasets
,”
Med. Phys.
,
42
(
4
), pp.
1477
1489
.10.1118/1.4907970
3.
Singh
,
S. P.
,
Gierada
,
D. S.
,
Pinsky
,
P.
,
Sanders
,
C.
,
Fineberg
,
N.
,
Sun
,
Y.
,
Lynch
,
D.
, and
Nath
,
H.
,
2012
, “
Reader Variability in Identifying Pulmonary Nodules on Chest Radiographs From the National Lung Screening Trial
,”
J. Thorac. Imaging
,
27
(
4
), pp.
249
254
.10.1097/RTI.0b013e318256951e
4.
Wang
,
M.
, and
Li
,
D.
,
2022
, “
An Automatic Segmentation Method for Lung Tumor Based on Improved Region Growing Algorithm
,”
Diagnostics
,
12
(
12
), p.
2971
.10.3390/diagnostics12122971
5.
Wiharto
,
W.
, and
Suryani
,
E.
,
2020
, “
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels
,”
Acta Inf. Med.
,
28
(
1
), pp.
42
47
.10.5455/aim.2020.28.42-47
6.
Liao
,
X.
,
Zhao
,
J.
,
Jiao
,
C.
,
Lei
,
L.
,
Qiang
,
Y.
, and
Cui
,
Q.
,
2016
, “
A Segmentation Method for Lung Parenchyma Image Sequences Based on Superpixels and a Self-Generating Neural Forest
,”
PLoS One
,
11
(
8
), p.
e0160556
.10.1371/journal.pone.0160556
7.
Xie
,
H.
,
Yang
,
D.
,
Sun
,
N.
,
Chen
,
Z.
, and
Zhang
,
Y.
,
2019
, “
Automated Pulmonary Nodule Detection in CT Images Using Deep Convolutional Neural Networks
,”
Pattern Recognit.
,
85
, pp.
109
119
.10.1016/j.patcog.2018.07.031
8.
Shelhamer
,
E.
,
Long
,
J.
, and
Darrell
,
T.
,
2017
, “
Fully Convolutional Networks for Semantic Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
39
(
4
), pp.
640
651
.10.1109/TPAMI.2016.2572683
9.
Badrinarayanan
,
V.
,
Kendall
,
A.
, and
Cipolla
,
R.
,
2017
, “
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
39
(
12
), pp.
2481
2495
.10.1109/TPAMI.2016.2644615
10.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015
, Springer, Cham, pp.
234
241
.10.1007/978-3-319-24574-4_28
11.
Zhou
,
Z.
,
Siddiquee
,
M. M. R.
,
Tajbakhsh
,
N.
, and
Liang
,
J.
,
2020
, “
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation
,”
IEEE Trans. Med. Imaging
,
39
(
6
), pp.
1856
1867
.10.1109/TMI.2019.2959609
12.
Huang
,
H.
,
Lin
,
L.
,
Tong
,
R.
,
Hu
,
H.
,
Zhang
,
Q.
,
Lwamoto
,
Y.
, and
Wu
,
J.
,
2020
, “
UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
, Barcelona, Spain, May 4–8, pp.
1055
1059
.10.1109/ICASSP40776.2020.9053405
13.
Khan
,
M. A.
,
Rajinikanth
,
V.
,
Satapathy
,
S. C.
,
Taniar
,
D.
,
Mohanty
,
J. R.
,
Tariq
,
U.
, and
Damasevicius
,
R.
,
2021
, “
VGG19 Network Assisted Joint Segmentation and Classification of Lung Nodules in CT Images
,”
Diagnostics
,
11
(
12
), p.
2208
.10.3390/diagnostics11122208
14.
Hu
,
J.
,
Shen
,
L.
,
Albanie
,
S.
,
Sun
,
G.
, and
Wu
,
E.
,
2020
, “
Squeeze-and-Excitation Networks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
42
(
8
), pp.
2011
2023
.10.1109/TPAMI.2019.2913372
15.
Liu
,
Z.
,
Lin
,
Y.
,
Cao
,
Y.
,
Hu
,
H.
,
Wei
,
Y.
,
Zhang
,
Z.
, and
Guo
,
B.
,
2021
, “
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
,”
ICCV
, QC, Canada, Oct. 10–17, pp.
10012
10022
.10.1109/ICCV48922.2021.00986
16.
Cao
,
H.
,
Wang
,
Y.
,
Chen
,
J.
,
Jiang
,
D.
,
Zhang
,
X.
,
Tian
,
Q.
, and
Wang
,
M.
,
2022
, “
Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation
,”
Computer Vision–ECCV 2022 Workshops
, Tel Aviv, Israel, pp.
205
218
.10.48550/arXiv.2105.05537
17.
Milletari
,
F.
,
Navab
,
N.
, and
Ahmadi
,
S.-A.
,
2016
, “
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
,”
Proceedings of the IEEE
, Stanford, CA, Oct. 25–28, pp.
565
571
.10.1109/3DV.2016.79
18.
Litjens
,
G.
,
Toth
,
R.
,
van de Ven
,
W.
,
Hoeks
,
C.
,
Kerkstra
,
S.
,
van Ginneken
,
B.
,
Vincent
,
G.
, et al.,
2014
, “
Evaluation of Prostate Segmentation Algorithms for MRI: The PROMISE12 Challenge
,”
Med. Image Anal.
,
18
(
2
), pp.
359
373
.10.1016/j.media.2013.12.002
19.
Feng
,
X.
,
Yang
,
J.
,
Laine
,
A. F.
, and
Angelini
,
E. D.
,
2017
, “
Discriminative Localization in CNNs for Weakly-Supervised Segmentation of Pulmonary Nodules
,”
Medical Image Computing and Computer-Assisted Intervention
, Springer, Cham, Vol.
10435
, pp. 568–576.10.1007/978-3-319-66179-7_65
20.
Sun
,
Y.
,
Tang
,
J.
,
Lei
,
W.
, and
He
,
D.
,
2020
, “
3D Segmentation of Pulmonary Nodules Based on Multi-View and Semi-Supervised
,”
IEEE Access
,
8
, pp.
26457
26467
.10.1109/ACCESS.2020.2971542
21.
Oktay
,
O.
,
Schlemper
,
J.
,
Folgoc
,
L. L.
,
Lee
,
M.
,
Heinrich
,
M.
,
Misawa
,
K.
, and
Rueckert
,
D.
,
2018
, “
Attention U-Net: Learning Where to Look for the Pancreas
,”
arXiv:1804.03999
.10.48550/arXiv.1804.03999
22.
Gao
,
S. H.
,
Cheng
,
M. M.
,
Zhao
,
K.
,
Zhang
,
X. Y.
,
Yang
,
M. H.
, and
Torr
,
P.
,
2021
, “
Res2Net: A New Multi-Scale Backbone Architecture
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
2
), pp.
652
662
.10.1109/TPAMI.2019.2938758
23.
He
,
K. M.
,
Zhang
,
X. Y.
,
Ren
,
S. Q.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
IEEE Conference on Computer Vision and Pattern Recognition
, June 27–30, pp.
770
778
.10.1109/CVPR.2016.90
24.
Li
,
X.
,
Wang
,
W.
,
Hu
,
X.
, and
Yang
,
J.
,
2019
, “
Selective Kernel Networks
,”
IEEE Conference on Computer Vision and Pattern Recognition
, Long Beach, CA, June 15–20, pp.
510
519
.10.1109/CVPR.2019.00060
25.
Lin
,
M.
,
Chen
,
Q.
, and
Yan
,
S. C.
,
2013
, “
Network in Network
,” arXiv:1312.4400.10.48550/arXiv.1312.4400
26.
Chen
,
L. C.
,
Papandreou
,
G.
,
Schroff
,
F.
, and
Adam
,
H.
,
2017
, “
Rethinking Atrous Convolution for Semantic Image Segmentation
,” arXiv:1706.05587.10.48550/arXiv.1706.05587
You do not currently have access to this content.