Abstract

The biomechanical properties of the sclera such as the stiffness, anisotropic behavior, and nonlinear stress–strain relationship have been extensively investigated for the pathogenesis study of ocular diseases. Even so, scarce mechanical investigations have been conducted on the damage in the sclera when subjected to large and repetitive deformations. Hence, the aim of this study is to quantify microstructural damage of the posterior and anterior sclera, through mechanical testing and model fitting. We performed uniaxial mechanical tests on scleral strips dissected from African green monkeys. Samples were subjected to strain-driven cycles of 5%, 10%, 15%, and 20% to evaluate the damage behavior commonly known as the Mullins effect. Experimental results showed qualitative changes in the stress–stretch curves when higher loading cycles were applied. A pseudo-elastic model accurately captured the curve trends across all tested samples, as indicated by a coefficient of determination above 0.96 and a subsequent finite element analysis (FEA) validation. Damage evolution and resultant permanent set demonstrated that considerable microstructural failure was attainable even at small strain levels and that the inherent plasticity had a similar contribution to stress-softening as the Mullins effect. Computed material and damage properties are expected to provide a broader understanding of the underlying mechanisms of ocular diseases and the development of more effective approaches for their treatment.

References

1.
Wang
,
Y.
, and
Cao
,
H.
,
2022
, “
Corneal and Scleral Biomechanics in Ophthalmic Diseases: An Updated Review
,”
Med. Novel Technol. Devices
,
15
, p.
100140
.10.1016/j.medntd.2022.100140
2.
Cook
,
C.
, and
Foster
,
P.
,
2012
, “
Epidemiology of Glaucoma: What's New?
Can. J. Ophthalmol.
,
47
(
3
), pp.
223
226
.10.1016/j.jcjo.2012.02.003
3.
Nguyen
,
C.
,
Cone
,
F.
,
Nguyen
,
T.
,
Coudrillier
,
B.
,
Pease
,
M.
,
Steinhart
,
M.
,
Oglesby
,
E.
,
Jefferys
,
J.
, and
Quigley
,
H.
,
2013
, “
Studies of Scleral Biomechanical Behavior Related to Susceptibility for Retinal Ganglion Cell Loss in Experimental Mouse Glaucoma
,”
Invest. Ophthalmol. Visual Sci.
,
54
(
3
), pp.
1767
1780
.10.1167/iovs.12-10952
4.
Bengtsson
,
B.
, and
Heijl
,
A.
,
2005
, “
A Long-Term Prospective Study of Risk Factors for Glaucomatous Visual Field Loss in Patients With Ocular Hypertension
,”
J. Glaucoma
,
14
(
2
), pp.
135
138
.10.1097/01.ijg.0000151683.04410.f3
5.
Feola
,
A.
,
Myers
,
J.
,
Raykin
,
J.
,
Mulugeta
,
L.
,
Nelson
,
E.
,
Samuels
,
B.
, and
Ethier
,
C.
,
2016
, “
Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure
,”
Invest. Ophthalmol. Visual Sci.
,
57
(
4
), pp.
1901
1911
.10.1167/iovs.15-17573
6.
Hua
,
Y.
,
Tong
,
J.
,
Ghate
,
D.
,
Kedar
,
S.
, and
Gu
,
L.
,
2017
, “
Intracranial Pressure Influences the Behavior of the Optic Nerve Head
,”
ASME J. Biomech. Eng.
,
139
(
3
), p.
031003
.10.1115/1.4035406
7.
Norman
,
R.
,
Flanagan
,
J.
,
Sigal
,
I.
,
Rausch
,
S.
,
Tertinegg
,
I.
, and
Ethier
,
C.
,
2011
, “
Finite Element Modeling of the Human Sclera: Influence on Optic Nerve Head Biomechanics and Connections With Glaucoma
,”
Exp. Eye Res.
,
93
(
1
), pp.
4
12
.10.1016/j.exer.2010.09.014
8.
Eilaghi
,
A.
,
Flanagan
,
J.
,
Simmons
,
C.
, and
Ethier
,
C.
,
2010
, “
Effects of Scleral Stiffness Properties on Optic Nerve Head Biomechanics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1586
1592
.10.1007/s10439-009-9879-7
9.
Schultz
,
D.
,
Lotz
,
J.
,
Lee
,
S.
,
Trinidad
,
M.
, and
Stewart
,
J.
,
2008
, “
Structural Factors That Mediate Scleral Stiffness
,”
Invest. Ophthalmol. Visual Sci.
,
49
(
10
), pp.
4232
4236
.10.1167/iovs.08-1970
10.
Eilaghi
,
A.
,
Flanagan
,
J.
,
Tertinegg
,
I.
,
Simmons
,
C.
,
Brodland
,
G.
, and
Ethier
,
C.
,
2010
, “
Biaxial Mechanical Testing of Human Sclera
,”
J. Biomech.
,
43
(
9
), pp.
1696
1701
.10.1016/j.jbiomech.2010.02.031
11.
Coudrillier
,
B.
,
Tian
,
J.
,
Alexander
,
S.
,
Myers
,
K. M.
,
Quigley
,
H. A.
, and
Nguyen
,
T. D.
,
2012
, “
Biomechanics of the Human Posterior Sclera: Age-and Glaucoma-Related Changes Measured Using Inflation Testing
,”
Invest. Ophthalmol. Visual Sci.
,
53
(
4
), pp.
1714
1728
.10.1167/iovs.11-8009
12.
Bianco
,
G.
,
Levy
,
A.
,
Grytz
,
R.
, and
Fazio
,
M.
,
2021
, “
Effect of Different Preconditioning Protocols on the Viscoelastic Inflation Response of the Posterior Sclera
,”
Acta Biomater.
,
128
, pp.
332
345
.10.1016/j.actbio.2021.04.042
13.
Pierce
,
D.
,
Maier
,
F.
,
Weisbecker
,
H.
,
Viertler
,
C.
,
Verbrugghe
,
P.
,
Famaey
,
N.
,
Fourneau
,
I.
,
Herijger
,
P.
, and
Holzapfel
,
G.
,
2015
, “
Human Thoracic and Abdominal Aortic Aneurysmal Tissues: Damage Experiments, Statistical Analysis and Constitutive Modeling
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
92
107
.10.1016/j.jmbbm.2014.10.003
14.
Peña
,
E.
, and
Doblaré
,
M.
,
2009
, “
An Anisotropic Pseudo-Elastic Approach for Modelling Mullins Effect in Fibrous Biological Materials
,”
Mech. Res. Commun.
,
36
(
7
), pp.
784
790
.10.1016/j.mechrescom.2009.05.006
15.
Franceschini
,
G.
,
Bigoni
,
D.
,
Regitnig
,
P.
, and
Holzapfel
,
G.
,
2006
, “
Brain Tissue Deforms Similarly to Filled Elastomers and Follows Consolidation Theory
,”
J. Mech. Phys. Solids
,
54
(
12
), pp.
2592
2620
.10.1016/j.jmps.2006.05.004
16.
Munoz
,
M. J.
,
Bea
,
J. A.
,
Rodríguez
,
J. F.
,
Ochoa
,
I.
,
Grasa
,
J.
,
Palomar
,
A. P.
,
Zaragoza
,
P.
,
Osta
,
R.
, and
Doblaré
,
M.
,
2008
, “
An Experimental Study of the Mouse Skin Behaviour: Damage and Inelastic Aspects
,”
J. Biomech.
,
41
(
1
), pp.
93
99
.10.1016/j.jbiomech.2007.07.013
17.
Lam
,
M. R.
,
Dong
,
P.
,
Shokrollahi
,
Y.
,
Gu
,
L.
, and
Suh
,
D.
,
2022
, “
Finite Element Analysis of Soccer Ball-Related Ocular and Retinal Trauma and Comparison With Abusive Head Trauma
,”
Ophthalmol. Sci.
,
2
(
2
), p.
100129
.10.1016/j.xops.2022.100129
18.
Tong
,
J.
,
Kedar
,
S.
,
Ghate
,
D.
, and
Gu
,
L.
,
2019
, “
Indirect Traumatic Optic Neuropathy Induced by Primary Blast: A Fluid–Structure Interaction Study
,”
ASME J. Biomech. Eng.
,
141
(
10
), p. 101011.10.1115/1.4043668
19.
De Leon-Ortega
,
J.
, and
Girkin
,
C. A.
,
2002
, “
Ocular Trauma-Related Glaucoma
,”
Ophthalmol. Clin. North Am.
,
15
(
2
), pp.
215
223
.10.1016/S0896-1549(02)00011-1
20.
Ogden
,
R. W.
, and
Roxburgh
,
D. G.
,
1999
, “
A Pseudo–Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. London. Ser. A Math., Phys. Eng. Sci.
,
455
(
1988
), pp.
2861
2877
.10.1098/rspa.1999.0431
21.
Chittajallu
,
S. N. S. H.
,
Richhariya
,
A.
,
Tse
,
K. M.
, and
Chinthapenta
,
V.
,
2022
, “
A Review on Damage and Rupture Modelling for Soft Tissues
,”
Bioengineering
,
9
(
1
), p.
26
.10.3390/bioengineering9010026
22.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2004
, “
A Constitutive Model for the Mullins Effect With Permanent Set in Particle-Reinforced Rubber
,”
Int. J. Solids Struct.
,
41
(
7
), pp.
1855
1878
.10.1016/j.ijsolstr.2003.11.014
23.
Peña
,
E.
,
Alastrué
,
V.
,
Laborda
,
A.
,
Martínez
,
M. A.
, and
Doblaré
,
M.
,
2010
, “
A Constitutive Formulation of Vascular Tissue Mechanics Including Viscoelasticity and Softening Behaviour
,”
J. Biomech.
,
43
(
5
), pp.
984
989
.10.1016/j.jbiomech.2009.10.046
24.
Peña
,
E.
,
2014
, “
Computational Aspects of the Numerical Modelling of Softening, Damage and Permanent Set in Soft Biological Tissues
,”
Comput. Struct.
,
130
, pp.
57
72
.10.1016/j.compstruc.2013.10.002
25.
Govindarajan
,
S. M.
,
Hurtado
,
J. A.
, and
Mars
,
W. V.
,
2007
, “
Simulation of Mullins Effect in Filled Elastomers Using Multiplicative Decomposition
,”
European Conference for Constitutive Models for Rubber
, Paris, France, Sept. 4–7, pp.
249
254
.https://www.researchgate.net/publication/283235549_Simulation_of_Mullins_effect_and_permanent_set_in_filled_elastomers_using_multiplicative_decomposition
26.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.10.1115/1.3564580
27.
Elsheikh
,
A.
,
Geraghty
,
B.
,
Alhasso
,
D.
,
Knappett
,
J.
,
Campanelli
,
M.
, and
Rama
,
P.
,
2010
, “
Regional Variation in the Biomechanical Properties of the Human Sclera
,”
Exp. Eye Res.
,
90
(
5
), pp.
624
633
.10.1016/j.exer.2010.02.010
28.
Park
,
J.
,
Shin
,
A.
,
Jafari
,
S.
, and
Demer
,
J.
,
2021
, “
Material Properties and Effect of Preconditioning of Human Sclera, Optic Nerve, and Optic Nerve Sheath
,”
Biomech. Model. Mechanobiol.
,
20
(
4
), pp.
1353
1363
.10.1007/s10237-021-01448-2
29.
Girard
,
M.
,
Suh
,
J.
,
Bottlang
,
M.
,
Burgoyne
,
C.
, and
Down
,
J.
,
2011
, “
Biomechanical Changes in the Sclera of Monkey Eyes Exposed to Chronic IOP Elevations
,”
Invest. Ophthalmol. Visual Sci.
,
52
(
8
), pp.
5656
5669
.10.1167/iovs.10-6927
30.
Niestrawska
,
J. A.
,
Viertler
,
C.
,
Regitnig
,
P.
,
Cohnert
,
T. U.
,
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2016
, “
Microstructure and Mechanics of Healthy and Aneurysmatic Abdominal Aortas: Experimental Analysis and Modelling
,”
J. R. Soc. Interface
,
13
(
124
), p.
20160620
.10.1098/rsif.2016.0620
31.
Maher
,
E.
,
Early
,
M.
,
Creane
,
A.
,
Lally
,
C.
, and
Kelly
,
D.
,
2012
, “
Site Specific Inelasticity of Arterial Tissue
,”
J. Biomech.
,
45
(
8
), pp.
1393
1399
.10.1016/j.jbiomech.2012.02.026
32.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2002
, “
A Rate-Independent Elastoplastic Constitutive Model for Biological Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Algorithmic Formulation and Finite Element Implementation
,”
Comput. Mechanics
,
29
(
4–5
), pp.
340
360
.10.1007/s00466-002-0347-6
33.
Xiao
,
X.
,
Xiao
,
C.
, and
Yin
,
Y.
,
2022
, “
A Hyperelastic Model for Corneal Stroma Accounting for Cross-Linking and Damage
,”
Int. J. Eng. Sci.
,
176
, p.
103701
.10.1016/j.ijengsci.2022.103701
34.
Razaghi
,
R.
,
Biglari
,
H.
, and
Karimi
,
A.
,
2020
, “
Finite Element Modeling of the Eyeglass-Related Traumatic Ocular Injuries Due to High Explosive Detonation
,”
Eng. Failure Anal.
,
117
, p.
104835
.10.1016/j.engfailanal.2020.104835
35.
Rangarajan
,
N.
,
Kamalakkannan
,
S. B.
,
Hasija
,
V.
,
Shams
,
T.
,
Jenny
,
C.
,
Serbanescu
,
I.
,
Ho
,
J.
,
Rusinek
,
M.
, and
Levin
,
A.
,
2009
, “
Finite Element Model of Ocular Injury in Abusive Head Trauma
,”
J. Am. Assoc. Pediatr. Ophthalmol. Strabismus
,
13
(
4
), pp.
364
369
.10.1016/j.jaapos.2008.11.006
36.
Liu
,
X.
,
Wang
,
L.
,
Du
,
C.
,
Li
,
D.
, and
Fan
,
Y.
,
2015
, “
Mechanism of Lens Capsular Rupture Following Blunt Trauma: A Finite Element Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
8
), pp.
914
921
.10.1080/10255842.2014.975798
37.
Girard
,
M.
,
Suh
,
J. K.
,
Bottlang
,
M.
,
Burgoyne
,
C. F.
, and
Downs
,
J. C.
,
2009
, “
Scleral Biomechanics in the Aging Monkey Eye
,”
Invest. Ophthalmol. Visual Sci.
,
50
(
11
), pp.
5226
5237
.10.1167/iovs.08-3363
38.
Fathi
,
F.
,
Ardakani
,
S. H.
,
Dehaghani
,
P. F.
, and
Mohammadi
,
S.
,
2017
, “
A Finite Strain Integral-Type Anisotropic Damage Model for Fiber-Reinforced Materials: Application in Soft Biological Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
262
295
.10.1016/j.cma.2017.04.009
You do not currently have access to this content.