Abstract

Biosensing technology has advanced significantly in recent years because of its wide applications in healthcare and biomolecule detection. However, fabricating a biosensor that will be rapid, sensitive, inexpensive, simple, and selective can be challenging. In this study, we fabricated a paper-based biosensor using conductive polymers (CPs) and graphene to detect Interleukin-6 (IL-6) in human serum. Cross-sectional scanning electron microscopy (SEM) was carried out and the images indicated that flat graphene nanoflake (GNF) sheets are connected to the fibrous structure of cellulose. We used 20 μL of human serum and 2 μL of IL-6 antigen concentration to measure the electrical impedance spectroscopy (EIS) using Autolab potentiostat (PGSTAT302N). A typical three-electrode method was preferred over the two-electrode method for better accuracy, and the sensor was connected through an adapter to the potentiostat. The paper-based biosensor detected in the range of 2 pg/mL to 20 μg/mL (the solution was prepared by serial dilution method), and the charge transfer resistance (Rct) increases linearly with the concentration (899 Ω–964 Ω). The limit of detection (LOD) of IL-6 detection was ∼16 pg/mL for our biosensor. Thus, using a portable, simple, sensitive, and inexpensive paper-based biosensor can be a great platform to detect early-stage cancer biomarkers.

References

1.
Anik
,
Ü.
,
2017
, “
Electrochemical Medical Biosensors for POC Applications
,”
Medical Biosensors for Point of Care (POC) Applications
,
Elsevier
, Sawston, UK, pp.
275
292
.10.1016/B978-0-08-100072-4.00012-5
2.
Ronkainen
,
N. J.
,
Halsall
,
H. B.
, and
Heineman
,
W. R.
,
2010
, “
Electrochemical Biosensors
,”
Chem. Soc. Rev.
,
39
(
5
), pp.
1747
1763
.10.1039/b714449k
3.
Grieshaber
,
D.
,
MacKenzie
,
R.
,
Vörös
,
J.
, and
Reimhult
,
E.
,
2008
, “
Electrochemical Biosensors-Sensor Principles and Architectures
,”
Sensors
,
8
(
3
), pp.
1400
1458
.10.3390/s80314000
4.
Wang
,
L.
,
Xiong
,
Q.
,
Xiao
,
F.
, and
Duan
,
H.
,
2017
, “
2D Nanomaterials Based Electrochemical Biosensors for Cancer Diagnosis
,”
Biosens. Bioelectron.
,
89
, pp.
136
151
.10.1016/j.bios.2016.06.011
5.
Singh
,
S.
,
Singh
,
P. K.
,
Umar
,
A.
,
Lohia
,
P.
,
Albargi
,
H.
,
Castañeda
,
L.
, and
Dwivedi
,
D.
,
2020
, “
2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications
,”
Micromachines
,
11
(
8
), p.
779
.10.3390/mi11080779
6.
Su
,
S.
,
Sun
,
Q.
,
Gu
,
X.
,
Xu
,
Y.
,
Shen
,
J.
,
Zhu
,
D.
,
Chao
,
J.
,
Fan
,
C.
, and
Wang
,
L.
,
2019
, “
Two-Dimensional Nanomaterials for Biosensing Applications
,”
TrAC Trends Anal. Chem.
,
119
, p.
115610
.10.1016/j.trac.2019.07.021
7.
Mantione
,
D.
,
Del Agua
,
I.
,
Sanchez-Sanchez
,
A.
, and
Mecerreyes
,
D.
,
2017
, “
Poly (3, 4-Ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics
,”
Polymers
,
9
(
12
), p.
354
.10.3390/polym9080354
8.
Cho
,
K. H.
,
Yu
,
H.
,
Lee
,
J. S.
, and
Jang
,
J.
,
2020
, “
Facile Synthesis of Palladium-Decorated Three-Dimensional Conducting Polymer Nanofilm for Highly Sensitive H2 Gas Sensor
,”
J. Mater. Sci.
,
55
(
12
), pp.
5156
5165
.10.1007/s10853-020-04370-7
9.
Wang
,
J.
,
2005
, “
Carbon‐Nanotube Based Electrochemical Biosensors: A Review
,”
Electroanalysis
,
17
(
1
), pp.
7
14
.10.1002/elan.200403113
10.
Wang
,
H.
,
Li
,
H.
,
Huang
,
Y.
,
Xiong
,
M.
,
Wang
,
F.
, and
Li
,
C.
,
2019
, “
A Label-Free Electrochemical Biosensor for Highly Sensitive Detection of Gliotoxin Based on DNA Nanostructure/MXene Nanocomplexes
,”
Biosens. Bioelectron.
,
142
, p.
111531
.10.1016/j.bios.2019.111531
11.
Liu
,
F.
,
Choi
,
K. S.
,
Park
,
T. J.
,
Lee
,
S. Y.
, and
Seo
,
T. S.
,
2011
, “
Graphene-Based Electrochemical Biosensor for Pathogenic Virus Detection
,”
BioChip J.
,
5
(
2
), pp.
123
128
.10.1007/s13206-011-5204-2
12.
Farzin
,
M. A.
, and
Abdoos
,
H.
,
2021
, “
A Critical Review on Quantum Dots: From Synthesis Toward Applications in Electrochemical Biosensors for Determination of Disease-Related Biomolecules
,”
Talanta
,
224
, p.
121828
.10.1016/j.talanta.2020.121828
13.
Jiang
,
Y.
,
Zhang
,
X.
,
Pei
,
L.
,
Yue
,
S.
,
Ma
,
L.
,
Zhou
,
L.
,
Huang
,
Z.
,
He
,
Y.
, and
Gao
,
J.
,
2018
, “
Silver Nanoparticles Modified Two-Dimensional Transition Metal Carbides as Nanocarriers to Fabricate Acetycholinesterase-Based Electrochemical Biosensor
,”
Chem. Eng. J.
,
339
, pp.
547
556
.10.1016/j.cej.2018.01.111
14.
Pingarrón
,
J. M.
,
Yáñez-Sedeño
,
P.
, and
González-Cortés
,
A.
,
2008
, “
Gold Nanoparticle-Based Electrochemical Biosensors
,”
Electrochim. Acta
,
53
(
19
), pp.
5848
5866
.10.1016/j.electacta.2008.03.005
15.
Swardfager
,
W.
,
Lanctôt
,
K.
,
Rothenburg
,
L.
,
Wong
,
A.
,
Cappell
,
J.
, and
Herrmann
,
N.
,
2010
, “
A Meta-Analysis of Cytokines in Alzheimer's Disease
,”
Biol. Psychiatry
,
68
(
10
), pp.
930
941
.10.1016/j.biopsych.2010.06.012
16.
Smith
,
P. C.
,
Hobisch
,
A.
,
Lin
,
D.-L.
,
Culig
,
Z.
, and
Keller
,
E. T.
,
2001
, “
Interleukin-6 and Prostate Cancer Progression
,”
Cytokine Growth Factor Rev.
,
12
(
1
), pp.
33
40
.10.1016/S1359-6101(00)00021-6
17.
Messina
,
G. A.
,
Panini
,
N. V.
,
Martinez
,
N. A.
, and
Raba
,
J.
,
2008
, “
Microfluidic Immunosensor Design for the Quantification of Interleukin-6 in Human Serum Samples
,”
Anal. Biochem.
,
380
(
2
), pp.
262
267
.10.1016/j.ab.2008.05.055
18.
Peng
,
J.
,
Feng
,
L. N.
,
Ren
,
Z. J.
,
Jiang
,
L. P.
, and
Zhu
,
J. J.
,
2011
, “
Synthesis of Silver Nanoparticle–Hollow Titanium Phosphate Sphere Hybrid as a Label for Ultrasensitive Electrochemical Detection of Human Interleukin‐6
,”
Small
,
7
(
20
), pp.
2921
2928
.10.1002/smll.201101210
19.
Said
,
E. A.
,
Al‐Reesi
,
I.
,
Al‐Shizawi
,
N.
,
Jaju
,
S.
,
Al‐Balushi
,
M. S.
,
Koh
,
C. Y.
,
Al‐Jabri
,
A. A.
, and
Jeyaseelan
,
L.
,
2021
, “
Defining IL‐6 Levels in Healthy Individuals: A Meta‐Analysis
,”
J. Med. Virol.
,
93
(
6
), pp.
3915
3924
.10.1002/jmv.26654
20.
Lippitz
,
B. E.
, and
Harris
,
R. A.
,
2016
, “
Cytokine Patterns in Cancer Patients: A Review of the Correlation Between Interleukin 6 and Prognosis
,”
Oncoimmunology
,
5
(
5
), p.
e1093722
.10.1080/2162402X.2015.1093722
21.
Wisitsoraat
,
A.
,
Pakapongpan
,
S.
,
Sriprachuabwong
,
C.
,
Phokharatkul
,
D.
,
Sritongkham
,
P.
,
Lomas
,
T.
, and
Tuantranont
,
A.
,
2013
, “
Graphene–PEDOT: PSS on Screen Printed Carbon Electrode for Enzymatic Biosensing
,”
J. Electroanal. Chem.
,
704
, pp.
208
213
.10.1016/j.jelechem.2013.07.012
22.
Hayashi
,
Y.
,
Matsuda
,
R.
,
Ito
,
K.
,
Nishimura
,
W.
,
Imai
,
K.
, and
Maeda
,
M.
,
2005
, “
Detection Limit Estimated From Slope of Calibration Curve: An Application to Competitive ELISA
,”
Anal. Sci.
,
21
(
2
), pp.
167
169
.10.2116/analsci.21.167
You do not currently have access to this content.