Abstract

In this study, cell behavior in a microchannel was tracked for the application of dielectrophoresis to biological cell sorting. A pair of titanium surface electrodes was fabricated inside the microchannel by photolithographic techniques: a triangular electrode with a tip angle of 0.26 rad and a rectangular electrode. A periodic alternating current of square wave with a period of 1 μs was introduced between the electrodes to induce an asymmetric electric field perpendicular to the mainstream direction. The behavior of mouse myoblasts (C2C12: mouse myoblast cell line) was measured in vitro while the suspension was flowing. The relationship between cell shift motion near the electrode and cell shape on the two-dimensional projection plane was investigated. Experimental results showed that cell movement in the direction perpendicular to the mainstream increased with geometries away from the circle in the two-dimensional projection plane. This method can be applied to sort cells according to their degree of shape deviation from a sphere. The dielectrophoretic effect can be applied to sort cells not only by cell size but also by cell deformation.

References

1.
Sawai
,
S.
,
Shukri
,
N. A.
,
Mohktar
,
M. S.
, and
Zaman
,
W. S. W. K.
,
2022
, “
Dielectrophoresis-Based Discrimination of Hepatic Carcinoma Cells Following Treatment With Cytotoxic Agents
,”
Eng. Sci. Technol. Int. J.
,
25
, p.
100990
.10.1016/j.jestch.2021.04.009
2.
Zhang
,
Y.
,
Wang
,
S.
,
Chen
,
J.
,
Yang
,
F.
, and
Li
,
G.
,
2020
, “
Separation of Macrophages Using a Dielectrophoresis-Based Microfluidic Device
,”
BioChip J.
,
14
(
2
), pp.
185
194
.10.1007/s13206-020-4207-2
3.
Hashimoto
,
S.
,
Sugimoto
,
H.
, and
Hino
,
H.
,
2019
, “
Effect of Couette Type of Shear Stress Field With Axial Shear Slope on Deformation and Migration of Cell: Comparison Between C2C12 and HUVEC
,”
J. Syst. Cybern. Inf.
,
17
(
2
), pp.
4
10
.https://www.iiisci.org/Journal/PDV/sci/pdfs/BA941VS19.pdf
4.
Hashimoto
,
S.
,
2022
, “
Cell Behavior in Flow Passing Through Micromachined Gap
,”
ASME J. Med. Diagn.
,
5
(
4
), p.
041001
.10.1115/1.4054261
5.
Shamloo
,
A.
,
Yazdani
,
A.
, and
Saghafifar
,
F.
,
2020
, “
Investigation of a Two-Step Device Implementing Magnetophoresis and Dielectrophoresis for Separation of Circulating Tumor Cells From Blood Cells
,”
Eng. Life Sci.
,
20
(
7
), pp.
296
304
.10.1002/elsc.202000001
6.
Hashimoto
,
S.
,
2022
, “
Behavior of Cell Flowing Over Oblique Microrectangular Groove
,”
ASME J. Med. Diagn.
,
5
(
4
), p.
041008
.10.1115/1.4055016
7.
Ettehad
,
H. M.
,
Zarrin
,
P. S.
,
Hölzel
,
R.
, and
Wenger
,
C.
,
2020
, “
Dielectrophoretic Immobilization of Yeast Cells Using CMOS Integrated Microfluidics
,”
Micromachines
,
11
(
5
), p.
501
.10.3390/mi11050501
8.
Tay
,
F. E. H.
,
Yu
,
L.
, and
Iliescu
,
C.
,
2009
, “
Particle Manipulation by Miniaturised Dielectrophoretic Devices
,”
Def. Sci. J.
,
59
(
6
), pp.
595
604
.10.14429/dsj.59.1564
9.
Turcan
,
I.
, and
Olariu
,
M. A.
,
2020
, “
Dielectrophoretic Manipulation of Cancer Cells and Their Electrical Characterization
,”
ACS Comb. Sci.
,
22
(
11
), pp.
554
578
.10.1021/acscombsci.0c00109
10.
Ansar Bi
,
M. Z.
,
Tirth
,
V.
,
Yousuff
,
C. M.
,
Shukla
,
N. K.
,
Islam
,
S.
,
Irshad
,
K.
, and
Aarif
,
K. O. M.
,
2020
, “
Simulation Guided Microfluidic Design for Multitarget Separation Using Dielectrophoretic Principle
,”
BioChip J.
,
14
(
4
), pp.
390
404
.10.1007/s13206-020-4406-x
11.
Dastani
,
K.
,
Zand
,
M. M.
,
Kavand
,
H.
,
Javidi
,
R.
,
Hadi
,
A.
,
Valadkhani
,
Z.
, and
Renaud
,
P.
,
2020
, “
Effect of Input Voltage Frequency on the Distribution of Electrical Stresses on the Cell Surface Based on Single-Cell Dielectrophoresis Analysis
,”
Sci. Rep.
,
10
(
1
), pp.
1
15
.10.1038/s41598-019-56952-4
12.
Farasat
,
M.
,
Aalaei
,
E.
,
Ronizi
,
S. K.
,
Bakhshi
,
A.
,
Mirhosseini
,
S.
,
Zhang
,
J.
,
Nguyen
,
N. T.
, and
Kashaninejad
,
N.
,
2022
, “
Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation
,”
Biosensors
,
12
(
7
), p.
510
.10.3390/bios12070510
13.
Guan
,
Y.
,
Liu
,
Y.
,
Lei
,
H.
,
Liu
,
S.
,
Xu
,
F.
,
Meng
,
X.
,
Bai
,
M.
,
Wang
,
X.
, and
Yang
,
G.
,
2020
, “
Dielectrophoresis Separation of Platelets Using a Novel Zigzag Microchannel
,”
Micromachines
,
11
(
10
), p.
890
.10.3390/mi11100890
14.
Sharbati
,
P.
,
Sadaghiani
,
A. K.
, and
Koşar
,
A.
,
2023
, “
New Generation Dielectrophoretic-Based Microfluidic Device for Multi-Type Cell Separation
,”
Biosensors
,
13
(
4
), p.
418
.10.3390/bios13040418
15.
Valero
,
A.
,
Braschler
,
T.
,
Demierre
,
N.
, and
Renaud
,
P.
,
2010
, “
A Miniaturized Continuous Dielectrophoretic Cell Sorter and Its Applications
,”
Biomicrofluidics
,
4
(
2
), p.
022807
.10.1063/1.3430542
16.
Kung
,
Y. C.
,
Niazi
,
K. R.
, and
Chiou
,
P. Y.
,
2021
, “
Tunnel Dielectrophoresis for Ultra-High Precision Size-Based Cell Separation
,”
Lab Chip
,
21
(
6
), pp.
1049
1060
.10.1039/D0LC00853B
17.
Kwak
,
T. J.
,
Jung
,
H.
,
Allen
,
B. D.
,
Demirel
,
M. C.
, and
Chang
,
W. J.
,
2021
, “
Dielectrophoretic Separation of Randomly Shaped Protein Particles
,”
Sep. Purif. Technol.
,
262
, p.
118280
.10.1016/j.seppur.2020.118280
18.
Varmazyari
,
V.
,
Habibiyan
,
H.
,
Ghafoorifard
,
H.
,
Ebrahimi
,
M.
, and
Ghafouri-Fard
,
S.
,
2022
, “
A Dielectrophoresis-Based Microfluidic System Having Double-Sided Optimized 3D Electrodes for Label-Free Cancer Cell Separation With Preserving Cell Viability
,”
Sci. Rep.
,
12
(
1
), p.
12100
.10.1038/s41598-022-16286-0
19.
Vu-Dinh
,
H.
,
Quang
,
L. D.
,
Lin
,
Y. R.
, and
Jen
,
C. P.
,
2023
, “
A Dielectrophoresis-Based Platform of Cancerous Cell Capture Using Aptamer-Functionalized Gold Nanoparticles in a Microfluidic Channel
,”
Electrophoresis
,
44
(
11–12
), pp.
1002
1015
.10.1002/elps.202200259
20.
Hashimoto
,
S.
,
Hasegawa
,
D.
,
Takahashi
,
Y.
, and
Matsuzawa
,
R.
,
2019
, “
Design of Flow Channel With Surface Electrodes to Detect Dielectrophoretic Movement of Floating Myoblast
,”
Proceedings of the 23rd World Multi-Conference on Systemics, Cybernetics and Informatics
,
International Institute of Informatics and Cybernetics
,
Orlando, FL
, July 6–9, Vol.
4
, pp.
94
99
.http://www.mech.kogakuin.ac.jp/labs/bio/pdf/2019hasegawa.pdf
21.
Hashimoto
,
S.
, and
Ono
,
R.
,
2021
, “
Analysis of Dielectrophoretic Movement of Cell Flowing in Micro Channel Related to Shape of Cell
,”
J. Syst. Cybern. Inf.
,
19
(
5
), pp.
1
–8
.https://www.iiisci.org/journal/PDV/sci/pdfs/BA344PC21.pdf
22.
Hashimoto
,
S.
,
2020
, “
Applications of Polydimethyl-Siloxane: Microstructure of Functional Surface for Observation of Biological Cell Behavior
,”
Polydimethylsiloxane: Structure and Applications
,
P. N.
Carlsen
, ed.,
Nova Science Publishers
,
New York
, pp.
29
94
.
23.
Hashimoto
,
S.
,
2014
, “
Detect of Sublethal Damage With Cyclic Deformation of Erythrocyte in Shear Flow
,”
J. Syst. Cybern. Inf.
,
12
(
3
), pp.
41
46
.http://iiisci.org/journal/CV$/sci/pdfs/BA583NK14.pdf
You do not currently have access to this content.