Abstract

According to the obstructive sleep apnea Syndrome (OSAS), a wearable sleep monitoring system is designed based on machine learning using snoring sound signal. The system picks up snoring signal via bone conduction sensor, and calculates the apnea-hypopnea index (AHI). By analyzing the snoring signal in frequency domain, spectral entropy and other frequency-domain features are selected. Finally, the neural network classifier model is established. In the model, the input variables are eight frequency-domain features, and the output response is related to AHI value. Trained by machine learning, the result shows that the average accuracy in identifying the severity of the four kinds of OSAS categories is 59%. The system uses the measured data of snoring to analyze the symptoms of OSAS, so as to realize the preliminary forecast based on the snoring data. The system proposed in this paper has a good application development prospect in intelligent monitoring and medical instruments.

References

1.
Luzzi
,
V.
,
Altieri
,
F.
,
Di Carlo
,
G.
,
Guaragna
,
M.
,
Pirro
,
V.
,
Marasca
,
B.
, and
Cotticelli
,
L.
,
2022
, “
OSAS Severity and Occlusal Parameters: A Prospective Study Among Adult Subjects With Comorbidities
,”
Int. J. Environ. Res. Public Health
,
19
(
9
), p.
5517
.10.3390/ijerph19095517
2.
Belgü
,
A. U.
,
Erdoğan
,
B.
,
San
,
T.
, and
Gürkan
,
E.
,
2015
, “
The Relationship Between AHI, Epworth Scores and Sleep Endoscopy in Patients With OSAS
,”
Eur. Arch. Oto-Rhino-Laryngol.
,
272
(
1
), pp.
241
245
.10.1007/s00405-014-3220-2
3.
Marinou
,
A.
,
Leone
,
C.
,
Mastropasqua
,
B.
, and
Foresi
,
A.
,
2011
, “
Reliability of Apnea/Hypopnea Index (AHI) Determined by Two Different Auto-CPAP in Patients With Obstructive Sleep Apnea Syndrome (OSAS)
,”
Eur. Resp. J.
,
38
(
55
), p.
3919
.https://erj.ersjournals.com/content/38/Suppl_55/p3919
4.
Thayer
,
S.
,
2009
, “
Poster 19: Relationships Between Obstructive Sleep Apnea/Syndrome (OSA or OSAS) and Specific Cephalometric Values, Body Mass Index (BMI), and Apnea-Hypopnea Index (AHI)
,”
J. Oral Maxillofacial Surg.
,
67
(
9
), p.
78
.10.1016/j.joms.2009.05.148
5.
Shi
,
Y.
,
Jiang
,
Z.
,
Jiang
,
L.
, and
Xu
,
J.
,
2021
, “
Integrative Analysis of Key Candidate Genes and Signaling Pathways in Acute Coronary Syndrome Related to Obstructive Sleep Apnea by Bioinformatics
,”
Sci. Rep.
,
11
(
1
), p.
14153
.10.1038/s41598-021-93789-2
6.
Gil
,
E.
,
Mendez
,
M.
,
Vergara
,
J. M.
,
Cerutti
,
S.
,
Bianchi
,
A. M.
, and
Laguna
,
P.
,
2009
, “
Discrimination of Sleep-Apnea-Related Decreases in the Amplitude Fluctuations of Ppg Signal in Children by HRV Analysis
,”
IEEE Trans. Biomed. Eng.
,
56
(
4
), pp.
1005
1014
.10.1109/TBME.2008.2009340
7.
Radlinski
,
J.
,
Zou
,
D.
,
Grote
,
L.
,
Hedner
,
J.
, and
Tomalak
,
W.
,
2013
, “
Changes of Complexity of Pulse Wave Signal After Elimination of Sleep Apnea
,”
Eur. Resp. J.
,
42
(S57).
8.
Jiang
,
P.
,
Zhu
,
R.
,
Dong
,
X.
, and
Chang
,
Y.
,
2018
, “
Combination Mode of Physiological Signals for Diagnosis of OSAS Using Portable Monitor
,”
Sleep Breathing
,
22
(
1
), pp.
123
129
.10.1007/s11325-017-1544-z
9.
Kayabekir
,
M.
, and
Yağanoğlu
,
M.
,
2022
, “
The Relationship Between Snoring Sounds and EEG Signals on Polysomnography
,”
Sleep Breathing
,
26
(
3
), pp.
1219
1226
.10.1007/s11325-021-02516-8
10.
Marçal
,
T. A. S.
,
dos Santos
,
J. M.
,
Rosa
,
A.
, and
Cardoso
,
J. M. R.
,
2020
, “
OSAS Assessment With Entropy Analysis of High Resolution Snoring Audio Signals
,”
Biomed. Signal Process Control
,
61
, p.
101965
.10.1016/j.bspc.2020.101965
11.
Anderer
,
P.
,
Fonseca
,
P.
,
Ross
,
M.
,
Moreau
,
A.
,
Cerny
,
A.
,
Aubert
,
X.
, and
Klee
,
M.
,
2018
, “
Deep Learning for Scoring Sleep Based on Cardiorespiratory Signals as Compared to Auto and Multiple Manual Sleep Scorings Based on Neurological Signals
,”
Eur. Respir. J.
,
52
(
S62
), p.
PA2248
.10.1183/13993003.congress-2018.PA2248
12.
Arslan Tuncer
,
S.
,
Akılotu
,
B.
, and
Toraman
,
S.
,
2019
, “
A Deep Learning-Based Decision Support System for Diagnosis of OSAS Using PTT Signals
,”
Med. Hypotheses
,
127
, pp.
15
22
.10.1016/j.mehy.2019.03.026
13.
Liang
,
J.
,
Qin
,
Z.
,
Xue
,
L.
,
Lin
,
X.
, and
Shen
,
X.
,
2021
, “
Efficient and Privacy-Preserving Decision Tree Classification for Health Monitoring Systems
,”
IEEE Internet Things J.
,
8
(
16
), pp.
12528
12539
.10.1109/JIOT.2021.3066307
14.
Nguyen
,
T. L.
, and
Won
,
Y.
,
2015
, “
Sleep Snoring Detection Using Multi-Layer Neural Networks
,”
Biomed. Mater. Eng.
,
26
(
s1
), pp.
S1749
S1755
.10.3233/BME151475
15.
Marcos
,
J. V.
,
Hornero
,
R.
,
Lvarez
,
D.
,
Nabney
,
I. T.
,
Del Campo
,
F.
, and
Zamarrón
,
C.
,
2010
, “
The Classification of Oximetry Signals Using Bayesian Neural Networks to Assist in the Detection of Obstructive Sleep Apnoea Syndrome
,”
Physiol. Meas.
,
31
(
3
), pp.
375
394
.10.1088/0967-3334/31/3/007
16.
Marcos
,
J. V.
,
Hornero
,
R.
,
Álvarez
,
D.
,
del Campo
,
F.
,
Zamarrón
,
C.
, and
López
,
M.
,
2008
, “
Utility of Multilayer Perceptron Neural Network Classifiers in the Diagnosis of the Obstructive Sleep Apnoea Syndrome From Nocturnal Oximetry
,”
Comput. Methods Programs Biomed.
,
92
(
1
), pp.
79
89
.10.1016/j.cmpb.2008.05.006
17.
Luo
,
Y.
,
Wang
,
P.
,
Yu
,
K.
,
Luo
,
S.
, and
Sun
,
L.
,
2021
, “
Using Sleep Monitoring System for Estimating and Analysing the Sleep Stages
,”
Pak. J. Zool.
,
53
(
6
), pp.
2491
2494
.10.17582/journal.pjz/20200407190434
18.
Yun
,
J.
,
Park
,
J.
,
Jeong
,
S.
,
Hong
,
D.
, and
Kim
,
D.
,
2022
, “
A Mask-Shaped Respiration Sensor Using Triboelectricity and a Machine Learning Approach Toward Smart Sleep Monitoring Systems
,”
Polymers (Basel
),
14
(
17
), p.
3549
.10.3390/polym14173549
19.
Zhang
,
X.
,
Li
,
J.
,
Cai
,
Z.
,
Zhao
,
L.
, and
Liu
,
C.
,
2022
, “
Deep Learning-Based Signal Quality Assessment for Wearable ECGs Existing Signal Quality Classification Methods
,”
IEEE Instrum. Meas. Mag.
,
25
(
5
), pp.
41
52
.10.1109/MIM.2022.9832823
20.
Xin
,
Y.
,
Liu
,
T.
,
Liu
,
H.
,
Liu
,
L.
,
Li
,
Y.
,
Hou
,
T.
,
Liu
,
C.
,
Zhu
,
J.
,
Lin
,
T.
, and
Jin
,
S.
,
2021
, “
A Bone-Conduction Transducer-Based Detection System for Sleep Apnea Screening in the Family Units
,”
IEEE Sens. J.
,
21
(
6
), pp.
8411
8420
.10.1109/JSEN.2020.3048310
You do not currently have access to this content.