Abstract

Measurements of brain deformations under dynamic loading are required to understand the biomechanics of traumatic brain injury (TBI). In this work, we have experimentally measured two-dimensional (2D) brain deformations in a sacrificed goat brain under injurious impact loading. To facilitate imaging, the goat head was dissected along the longitudinal midline. Goat head response was studied for sagittal plane rotation. Full-field, 2D deformations in the midsagittal plane of a goat brain were obtained at spatiotemporal resolutions of ∼1 mm and 0.4 ms, respectively. Results elucidate the dynamic strain evolution. The goat brain underwent large deformation. The strain pattern was heterogeneous. Peak strains in various brain regions were established within ∼20 ms, followed by negligible strain development due to the considerable viscous dissipation. The Cerebellum region experienced the highest strain, followed by cortical and subcortical regions. Strain concentration in the goat brain near the stiff membrane of the tentorium was observed. The strains in a brain simulant of a head surrogate (obtained previously) were also compared against the goat brain response. A response in the brain simulant was comparable to the goat brain in terms of strain pattern, peak strains in various substructures, and strain concentration near the membrane. However, the brain simulant was less dissipative than the goat brain. These results enhance the current understanding of the biomechanics of the brain under dynamic loading.

References

1.
Dewan
,
M. C.
,
Rattani
,
A.
,
Gupta
,
S.
,
Baticulon
,
R. E.
,
Hung
,
Y.-C.
,
Punchak
,
M.
,
Agrawal
,
A.
, et al.,
2019
, “
Estimating the Global Incidence of Traumatic Brain Injury
,”
J. Neurosurg.
,
130
(
4
), pp.
1080
1097
.10.3171/2017.10.JNS17352
2.
Maas
,
A. I. R.
,
Menon
,
D. K.
,
Adelson
,
P. D.
,
Andelic
,
N.
,
Bell
,
M. J.
,
Belli
,
A.
,
Bragge
,
P.
, et al.,
2017
, “
Traumatic Brain Injury: Integrated Approaches to Improve Prevention, Clinical Care, and Research
,”
Lancet Neurol.
,
16
(
12
), pp.
987
1048
.10.1016/S1474-4422(17)30371-X
3.
Meaney
,
D. F.
,
Morrison
,
B.
, and
Bass
,
C. D.
,
2014
, “
The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021008
.10.1115/1.4026364
4.
Bayly
,
P. V.
,
Clayton
,
E. H.
, and
Genin
,
G. M.
,
2012
, “
Quantitative Imaging Methods for the Development and Validation of Brain Biomechanics Models
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
369
396
.10.1146/annurev-bioeng-071811-150032
5.
Goriely
,
A.
,
Geers
,
M. G.
,
Holzapfel
,
G. A.
,
Jayamohan
,
J.
,
Jérusalem
,
A.
,
Sivaloganathan
,
S.
,
Squier
,
W.
, et al.,
2015
, “
Mechanics of the Brain: Perspectives, Challenges, and Opportunities
,”
Biomech. Model. Mechanobiol.
,
14
(
5
), pp.
931
965
.10.1007/s10237-015-0662-4
6.
Ji
,
S.
,
Ghajari
,
M.
,
Mao
,
H.
,
Kraft
,
R. H.
,
Hajiaghamemar
,
M.
,
Panzer
,
M. B.
,
Willinger
,
R.
, et al.,
2022
, “
Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports
,”
Ann. Biomed. Eng.
,
50
(
11
), pp.
1389
1408
.10.1007/s10439-022-02999-w
7.
Margulies
,
S. S.
,
Thibault
,
L. E.
, and
Gennarelli
,
T. A.
,
1990
, “
Physical Model Simulations of Brain Injury in the Primate
,”
J. Biomech.
,
23
(
8
), pp.
823
836
.10.1016/0021-9290(90)90029-3
8.
Bayly
,
P. V.
,
Massouros
,
P. G.
,
Christoforou
,
E.
,
Sabet
,
A.
, and
Genin
,
G. M.
,
2008
, “
Magnetic Resonance Measurement of Transient Shear Wave Propagation in a Viscoelastic Gel Cylinder
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
2036
2049
.10.1016/j.jmps.2007.10.012
9.
Shreiber
,
D. I.
,
Gennarelli
,
T. A.
, and
Meaney
,
D. F.
,
1995
, “
The Incidence of Cerebral Contusions in the Human: A Physical Modeling Study
,”
Proceedings of the 1995 International IRCOBI Conference on the Biomechanics of Impact
, Brunnen, Switzerland, Sept. 13–15, pp.
233
244
.
10.
Bradshaw
,
D.
,
Ivarsson
,
J.
,
Morfey
,
C.
, and
Viano
,
D. C.
,
2001
, “
Simulation of Acute Subdural Hematoma and Diffuse Axonal Injury in Coronal Head Impact
,”
J. Biomech.
,
34
(
1
), pp.
85
94
.10.1016/S0021-9290(00)00135-4
11.
Singh
,
A.
,
Ganpule
,
S. G.
,
Khan
,
M. K.
, and
Iqbal
,
M. A.
,
2021
, “
Measurement of Brain Simulant Strains in Head Surrogate Under Impact Loading
,”
Biomech. Model. Mechanobiol.
,
20
(
6
), pp.
2319
2334
.10.1007/s10237-021-01509-6
12.
Singh
,
A.
,
Harmukh
,
A.
, and
Ganpule
,
S.
,
2022
, “
Investigation of Role of Falx and Tentorium on Brain Simulant Strain Under Impact Loading
,”
J. Biomech.
,
144
, p.
111347
.10.1016/j.jbiomech.2022.111347
13.
Alshareef
,
A.
,
Giudice
,
J. S.
,
Forman
,
J.
,
Salzar
,
R. S.
, and
Panzer
,
M. B.
,
2018
, “
A Novel Method for Quantifying Human in Situ Whole Brain Deformation Under Rotational Loading Using Sonomicrometry
,”
J. Neurotrauma
,
35
(
5
), pp.
780
789
.10.1089/neu.2017.5362
14.
Hardy
,
W. N.
,
Mason
,
M. J.
,
Foster
,
C. D.
,
Shah
,
C. S.
,
Kopacz
,
J. M.
,
Yang
,
K. H.
,
King
,
A. I.
, et al.,
2007
, “
A Study of the Response of the Human Cadaver Head to Impact
,”
Stapp Car Crash J.
,
51
, p.
17
.10.4271/2007-22-0002
15.
Dutrisac
,
S.
,
Rovt
,
J.
,
Post
,
A.
,
Goodwin
,
S.
,
Cron
,
G. O.
,
Jalali
,
A.
,
Poon
,
K.
,
Brien
,
S.
,
Frei
,
H.
,
Hoshizaki
,
T. B.
, and
Petel
,
O. E.
,
2021
, “
Intracranial Displacement Measurements Within Targeted Anatomical Regions of a Postmortem Human Surrogate Brain Subjected to Impact
,”
Ann. Biomed. Eng.
,
49
(
10
), pp.
2836
2851
.10.1007/s10439-021-02857-1
16.
Ibrahim
,
N. G.
,
Natesh
,
R.
,
Szczesny
,
S. E.
,
Ryall
,
K.
,
Eucker
,
S. A.
,
Coats
,
B.
, and
Margulies
,
S. S.
,
2010
, “
In Situ Deformations in the Immature Brain During Rapid Rotations
,”
ASME J. Biomech. Eng.
,
132
(
4
), p. 044501.10.1115/1.4000956
17.
Lauret
,
C.
,
Hrapko
,
M.
,
Van Dommelen
,
J.
,
Peters
,
G.
, and
Wismans
,
J.
,
2009
, “
Optical Characterization of Acceleration-Induced Strain Fields in Inhomogeneous Brain Slices
,”
Med. Eng. Phys.
,
31
(
3
), pp.
392
399
.10.1016/j.medengphy.2008.05.004
18.
Hoffe
,
B.
,
Mazurkiewicz
,
A.
,
Thomson
,
H.
,
Banton
,
R.
,
Piehler
,
T.
,
Petel
,
O. E.
, and
Holahan
,
M. R.
,
2021
, “
Relating Strain Fields With Microtubule Changes in Porcine Cortical Sulci Following Drop Impact
,”
J. Biomech.
,
128
, p.
110708
.10.1016/j.jbiomech.2021.110708
19.
Chan
,
D. D.
,
Knutsen
,
A. K.
,
Lu
,
Y.-C.
,
Yang
,
S. H.
,
Magrath
,
E.
,
Wang
,
W.-T.
,
Bayly
,
P. V.
,
Butman
,
J. A.
, and
Pham
,
D. L.
,
2018
, “
Statistical Characterization of Human Brain Deformation During Mild Angular Acceleration Measured In Vivo by Tagged Magnetic Resonance Imaging
,”
ASME J. Biomech. Eng.
,
140
(
10
), p. 101005.10.1115/1.4040230
20.
Knutsen
,
A. K.
,
Gomez
,
A. D.
,
Gangolli
,
M.
,
Wang
,
W.-T.
,
Chan
,
D.
,
Lu
,
Y.-C.
,
Christoforou
,
E.
,
Prince
,
J. L.
,
Bayly
,
P. V.
,
Butman
,
J. A.
, and
Pham
,
D. L.
,
2020
, “
In Vivo Estimates of Axonal Stretch and 3D Brain Deformation During Mild Head Impact
,”
Brain Multiphys.
,
1
, p.
100015
.10.1016/j.brain.2020.100015
21.
Sabet
,
A. A.
,
Christoforou
,
E.
,
Zatlin
,
B.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2008
, “
Deformation of the Human Brain Induced by Mild Angular Head Acceleration
,”
J. Biomech.
,
41
(
2
), pp.
307
315
.10.1016/j.jbiomech.2007.09.016
22.
Zhao
,
W.
, and
Ji
,
S.
,
2020
, “
Displacement-and Strain-Based Discrimination of Head Injury Models Across a Wide Range of Blunt Conditions
,”
Ann. Biomed. Eng.
,
48
(
6
), pp.
1661
1677
.10.1007/s10439-020-02496-y
23.
Zhao
,
W.
,
Wu
,
Z.
, and
Ji
,
S.
,
2021
, “
Displacement Error Propagation From Embedded Markers to Brain Strain
,”
ASME J. Biomech. Eng.
,
143
(
10
), p.
101001
.10.1115/1.4051050
24.
Zhou
,
Z.
,
Li
,
X.
,
Kleiven
,
S.
, and
Hardy
,
W. N.
,
2020
, “
Brain Strain From Motion of Sparse Markers
,”
Stapp Car Crash J.
, 63, pp.
1
27
.10.4271/2019-22-0001
25.
Zhou
,
Z.
,
Li
,
X.
,
Kleiven
,
S.
,
Shah
,
C. S.
, and
Hardy
,
W. N.
, “
A Reanalysis of Experimental Brain Strain Data: Implication for Finite Element Head Model Validation
,”
SAE
Paper No. 2018-22-0007. 10.4271/2018-22-0007
26.
Blaber
,
J.
,
Adair
,
B.
, and
Antoniou
,
A.
,
2015
, “
Ncorr: Open-Source 2D Digital Image Correlation Matlab Software
,”
Exp. Mech.
,
55
(
6
), pp.
1105
1122
.10.1007/s11340-015-0009-1
27.
Rowson
,
S.
,
Duma
,
S. M.
,
Beckwith
,
J. G.
,
Chu
,
J. J.
,
Greenwald
,
R. M.
,
Crisco
,
J. J.
,
Brolinson
,
G. P.
,
Duhaime
,
A.-C.
,
McAllister
,
T. W.
, and
Maerlender
,
A. C.
,
2012
, “
Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
1
13
.10.1007/s10439-011-0392-4
28.
Hernandez
,
F.
,
Giordano
,
C.
,
Goubran
,
M.
,
Parivash
,
S.
,
Grant
,
G.
,
Zeineh
,
M.
, and
Camarillo
,
D.
,
2019
, “
Lateral Impacts Correlate With Falx Cerebri Displacement and Corpus Callosum Trauma in Sports-Related Concussions
,”
Biomech. Model. Mechanobiol.
,
18
(
3
), pp.
631
649
.10.1007/s10237-018-01106-0
29.
Knutsen
,
A. K.
,
Bayly
,
P. V.
,
Butman
,
J. A.
, and
Pham
,
D. L.
,
2021
, “
3D Brain Deformation in Cadaveric Specimens Compared to Healthy Volunteers Under Non-Injurious Loading Conditions
,”
Computational Biomechanics for Medicine
,
Springer
, Cham, Switzerland, pp.
113
122
.
30.
Ho
,
J.
,
Zhou
,
Z.
,
Li
,
X.
, and
Kleiven
,
S.
,
2017
, “
The Peculiar Properties of the Falx and Tentorium in Brain Injury Biomechanics
,”
J. Biomech.
,
60
, pp.
243
247
.10.1016/j.jbiomech.2017.06.023
31.
Li
,
J.
,
Zhang
,
J.
,
Yoganandan
,
N.
,
Pintar
,
F.
, and
Gennarelli
,
T.
,
2007
, “
Regional Brain Strains and Role of Falx in Lateral Impact-Induced Head Rotational Acceleration
,”
Biomed. Sci. Instrum.
,
43
, pp.
24
29
.https://pubmed.ncbi.nlm.nih.gov/17487052/
32.
Lu
,
Y.-C.
,
Daphalapurkar
,
N. P.
,
Knutsen
,
A.
,
Glaister
,
J.
,
Pham
,
D.
,
Butman
,
J.
,
Prince
,
J.
,
Bayly
,
P.
, and
Ramesh
,
K.
,
2019
, “
A 3D Computational Head Model Under Dynamic Head Rotation and Head Extension Validated Using Live Human Brain Data, Including the Falx and the Tentorium
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1923
1940
.10.1007/s10439-019-02226-z
33.
Nishimoto
,
T.
, and
Murakami
,
S.
,
1998
, “
Relation Between Diffuse Axonal Injury and Internal Head Structures on Blunt Impact
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
140
147
.10.1115/1.2834294
34.
Meier
,
T. B.
,
Bergamino
,
M.
,
Bellgowan
,
P. S.
,
Teague
,
T. K.
,
Ling
,
J. M.
,
Jeromin
,
A.
, and
Mayer
,
A. R.
,
2016
, “
Longitudinal Assessment of White Matter Abnormalities Following Sports‐Related Concussion
,”
Hum. Brain Mapp.
,
37
(
2
), pp.
833
845
.10.1002/hbm.23072
35.
Murugavel
,
M.
,
Cubon
,
V.
,
Putukian
,
M.
,
Echemendia
,
R.
,
Cabrera
,
J.
,
Osherson
,
D.
, and
Dettwiler
,
A.
,
2014
, “
A Longitudinal Diffusion Tensor Imaging Study Assessing White Matter Fiber Tracts After Sports-Related Concussion
,”
J. Neurotrauma
,
31
(
22
), pp.
1860
1871
.10.1089/neu.2014.3368
36.
Herweh
,
C.
,
Hess
,
K.
,
Meyding-Lamadé
,
U.
,
Bartsch
,
A. J.
,
Stippich
,
C.
,
Jost
,
J.
,
Friedmann-Bette
,
B.
,
Heiland
,
S.
, et al.,
2016
, “
Reduced White Matter Integrity in Amateur Boxers
,”
Neuroradiology
,
58
(
9
), pp.
911
920
.10.1007/s00234-016-1705-y
37.
Chamard
,
E.
,
Lefebvre
,
G.
,
Lassonde
,
M.
, and
Theoret
,
H.
,
2016
, “
Long-Term Abnormalities in the Corpus Callosum of Female Concussed Athletes
,”
J. Neurotrauma
,
33
(
13
), pp.
1220
1226
.10.1089/neu.2015.3948
38.
Palacios
,
E. M.
,
Owen
,
J. P.
,
Yuh
,
E. L.
,
Wang
,
M. B.
,
Vassar
,
M. J.
,
Ferguson
,
A. R.
,
Diaz-Arrastia
,
R.
, et al.,
2020
, “
The Evolution of White Matter Microstructural Changes After Mild Traumatic Brain Injury: A Longitudinal DTI and NODDI Study
,”
Sci. Adv.
,
6
(
32
), p.
6892
.10.1126/sciadv.aaz6892
39.
Churchill
,
N. W.
,
Hutchison
,
M. G.
,
Richards
,
D.
,
Leung
,
G.
,
Graham
,
S. J.
, and
Schweizer
,
T. A.
,
2017
, “
Neuroimaging of Sport Concussion: Persistent Alterations in Brain Structure and Function at Medical Clearance
,”
Sci. Rep.
,
7
(
1
), p.
8297
.10.1038/s41598-017-07742-3
40.
Lancaster
,
M. A.
,
Olson
,
D. V.
,
McCrea
,
M. A.
,
Nelson
,
L. D.
,
LaRoche
,
A. A.
, and
Muftuler
,
L. T.
,
2016
, “
Acute White Matter Changes Following Sport‐Related Concussion: A Serial Diffusion Tensor and Diffusion Kurtosis Tensor Imaging Study
,”
Hum. Brain Mapp.
,
37
(
11
), pp.
3821
3834
.10.1002/hbm.23278
41.
Walsh
,
D. R.
,
Zhou
,
Z.
,
Li
,
X.
,
Kearns
,
J.
,
Newport
,
D. T.
, and
Mulvihill
,
J. J. E.
,
2021
, “
Mechanical Properties of the Cranial Meninges: A Systematic Review
,”
J. Neurotrauma
,
38
(
13
), pp.
1748
1761
.10.1089/neu.2020.7288
42.
Walsh
,
D. R.
,
Ross
,
A. M.
,
Newport
,
D. T.
,
Zhou
,
Z.
,
Kearns
,
J.
,
Fearon
,
C.
,
Lorigan
,
J.
, and
Mulvihill
,
J. J.
,
2021
, “
Mechanical Characterisation of the Human Dura Mater, Falx Cerebri and Superior Sagittal Sinus
,”
Acta Biomater.
,
134
, pp.
388
400
.10.1016/j.actbio.2021.07.043
43.
Holbourn
,
A. H. S.
,
1943
, “
Mechanics of Head Injuries
,”
Lancet
,
242
(
6267
), pp.
438
441
.10.1016/S0140-6736(00)87453-X
44.
Holbourn
,
A. H. S.
,
1956
, Private Communication to Dr. Sabina Strich, 13th Oct. 1956.
45.
Ommaya
,
A. K.
,
Yarnell
,
P.
,
Hirsch
,
A. E.
, and
Harris
,
E. H.
,
1967
, “
Scaling of Experimental Data on Cerebral Concussion in Sub-Human Primates to Concussion Threshold for Man
,”
SAE
Paper No. 670906. 10.4271/670906
46.
Ommaya
,
A. K.
, and
Hirsch
,
A. E.
,
1971
, “
Tolerances for Cerebral Concussion From Head Impact and Whiplash in Primates
,”
J. Biomech.
,
4
(
1
), pp.
13
21
.10.1016/0021-9290(71)90011-X
47.
Wu
,
T.
,
Antona-Makoshi
,
J.
,
Alshareef
,
A.
,
Giudice
,
J. S.
, and
Panzer
,
M. B.
,
2020
, “
Investigation of Cross-Species Scaling Methods for Traumatic Brain Injury Using Finite Element Analysis
,”
J. Neurotrauma
,
37
(
2
), pp.
410
422
.10.1089/neu.2019.6576
48.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Zhang
,
J.
, and
Baisden
,
J. L.
,
2009
, “
Physical Properties of the Human Head: Mass, Center of Gravity and Moment of Inertia
,”
J. Biomech.
,
42
(
9
), pp.
1177
1192
.10.1016/j.jbiomech.2009.03.029
49.
Zhou
,
R.
,
Li
,
Y.
,
Cavanaugh
,
J. M.
, and
Zhang
,
L.
,
2020
, “
Investigate the Variations of the Head and Brain Response in a Rodent Head Impact Acceleration Model by Finite Element Modeling
,”
Front. Bioeng. Biotech.
,
8
, p.
172
.10.3389/fbioe.2020.00172
50.
Morton
,
A. J.
, and
Howland
,
D. S.
,
2013
, “
Large Genetic Animal Models of Huntington's Disease
,”
J. Huntington's Dis.
,
2
(
1
), pp.
3
19
.10.3233/JHD-130050
51.
Sauleau
,
P.
,
Lapouble
,
E.
,
Val-Laillet
,
D.
, and
Malbert
,
C.-H.
,
2009
, “
The Pig Model in Brain Imaging and Neurosurgery
,”
Animal
,
3
(
8
), pp.
1138
1151
.10.1017/S1751731109004649
52.
Choudhary
,
O. P.
,
Kalita
,
P. C.
,
Doley
,
P. J.
, and
Kalita
,
A.
,
2017
, “
Applied Anatomy of the Head Region of the Indian Wild Pig (Sus scrofa) and Its Clinical Value During Regional Anesthesia
,”
J. Anim. Res.
,
7
(
2
), pp.
339
344
.10.5958/2277-940X.2017.00049.3
53.
Treuting
,
P. M.
,
Dintzis
,
S.
, and
Montine
,
K. S.
,
2017
, “
Comparative Anatomy and Histology: A Mouse, Rat, and Human Atlas
,” 2nd ed.,
Academic Press
, Cambridge, MA.
54.
Yoshida
,
T.
,
Mitsumori
,
K.
,
Harada
,
T.
, and
Maita
,
K.
,
1997
, “
Morphological and Ultrastructural Study of the Histogenesis of Meningeal Granular Cell Tumors in Rats
,”
Toxicol. Pathol.
,
25
(
2
), pp.
211
216
.10.1177/019262339702500211
55.
Smart
,
I.
, and
McSherry
,
G.
,
1986
, “
Gyrus Formation in the Cerebral Cortex in the Ferret. I. Description of the External Changes
,”
J. Anatomy
,
146
, p.
141
.https://pubmed.ncbi.nlm.nih.gov/3693054/#:~:text=The%20observations%20indicate%20that%20gyri,in%20lateral%20and%20dorsal%20view.
56.
Bèchet
,
N. B.
,
Shanbhag
,
N. C.
, and
Lundgaard
,
I.
,
2021
, “
Glymphatic Pathways in the Gyrencephalic Brain
,”
J. Cereb. Blood Flow Metab.
,
41
(
9
), pp.
2264
2279
.10.1177/0271678X21996175
57.
Vink
,
R.
,
2018
, “
Large Animal Models of Traumatic Brain Injury
,”
J. Neurosci. Res.
,
96
(
4
), pp.
527
535
.10.1002/jnr.24079
58.
Rai
,
R.
,
Iwanaga
,
J.
,
Shokouhi
,
G.
,
Oskouian
,
R. J.
, and
Tubbs
,
R. S.
,
2018
, “
The Tentorium Cerebelli: A Comprehensive Review Including Its Anatomy, Embryology, and Surgical Techniques
,”
Cureus
,
10
(
7
), p. e3079.10.7759/cureus.3079
59.
Li
,
P.
,
Ni
,
S.
,
Zhang
,
L.
,
Zeng
,
S.
, and
Luo
,
Q.
,
2006
, “
Imaging Cerebral Blood Flow Through the Intact Rat Skull With Temporal Laser Speckle Imaging
,”
Opt. Lett.
,
31
(
12
), pp.
1824
1826
.10.1364/OL.31.001824
60.
Ruan
,
J.
, and
Prasad
,
P.
,
2001
, “
The Effects of Skull Thickness Variations on Human Head Dynamic Impact Responses
,”
SAE
Paper No. 2001-22-0018.10.4271/2001-22-0018
61.
Mao
,
H.
,
Zhang
,
L.
,
Jiang
,
B.
,
Genthikatti
,
V. V.
,
Jin
,
X.
,
Zhu
,
F.
, and
Makwana
,
R.
,
2013
, “
Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111002
.10.1115/1.4025101
62.
Gayzik
,
F.
,
Moreno
,
D.
,
Geer
,
C.
,
Wuertzer
,
S.
,
Martin
,
R.
, and
Stitzel
,
J.
,
2011
, “
Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2568
2583
.10.1007/s10439-011-0359-5
63.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Vavalle
,
N. A.
,
Rhyne
,
A. C.
, and
Stitzel
,
J. D.
,
2011
, “
Development of the Global Human Body Models Consortium Mid-Sized Male Full Body Model
,”
Proceedings of the Thirty-Ninth International Workshop on Human Subjects for Biomechanical Research
,
National Highway Traffic Safety Administration
, Vol. 39, Washington, DC.https://www-nrd.nhtsa.dot.gov/pdf/bio/proceedings/2011_39/39-12.pdf
64.
Falland-Cheung
,
L.
,
Waddell
,
J. N.
,
Li
,
K. C.
,
Tong
,
D.
, and
Brunton
,
P.
,
2017
, “
Investigation of the Elastic Modulus, Tensile and Flexural Strength of Five Skull Simulant Materials for Impact Testing of a Forensic Skin/Skull/Brain Model
,”
J. Mech. Behav. Biomed. Mater.
,
68
, pp.
303
307
.10.1016/j.jmbbm.2017.02.023
65.
Chanda
,
A.
,
Unnikrishnan
,
V.
,
Flynn
,
Z.
, and
Lackey
,
K.
,
2017
, “
Experimental Study on Tissue Phantoms to Understand the Effect of Injury and Suturing on Human Skin Mechanical Properties
,”
Proc. Inst. Mech. Eng., Part H
,
231
(
1
), pp.
80
91
.10.1177/0954411916679438
66.
Chatelin
,
S.
,
Constantinesco
,
A.
, and
Willinger
,
R.
,
2010
, “
Fifty Years of Brain Tissue Mechanical Testing: From In Vitro to In Vivo Investigations
,”
Biorheology
,
47
(
5–6
), pp.
255
276
.10.3233/BIR-2010-0576
67.
Smith
,
D. R.
,
Guertler
,
C. A.
,
Okamoto
,
R. J.
,
Romano
,
A. J.
,
Bayly
,
P. V.
, and
Johnson
,
C. L.
,
2020
, “
Multi-Excitation Magnetic Resonance Elastography of the Brain: Wave Propagation in Anisotropic White Matter
,”
ASME J. Biomech. Eng.
,
142
(
7
), p. 071005.10.1115/1.4046199
You do not currently have access to this content.