Abstract

Cerebral aneurysms are potentially life-threatening cerebrovascular conditions where a weakened blood vessel in the brain bulges or protrudes over time. The most common way to treat aneurysms is surgical clipping, an approach where blood flow to the aneurysm is blocked by a permanently placed clip on the artery. However, not all aneurysms are identical; thus, there has been a need for patient-specific treatment options, where each aneurysm is treated based on its individual characteristics. Computational fluid dynamics (CFD) modeling can offer insights to predict how different treatment procedures will affect cerebral hemodynamics. In that regard, the goal of this pilot study was to investigate the flow characteristics and hemodynamic parameters in cerebral arteries before and after neurosurgical clipping. For this purpose, two patient-specific cerebral artery geometries with at least one aneurysm at the middle cerebral artery bifurcation were selected from an online dataset. A companion postclipping model was created for each geometry by removing the aneurysm from the original geometry. Tetrahedral mesh elements were then generated and CFD simulations were conducted to compare the blood velocity profile, secondary flow, flow streamline, and wall shear stress in the computational models with and without aneurysm. Results showed that the clipping treatment led to changes in the velocity profiles, secondary flow structures, and wall shear stress in the middle cerebral artery. In conclusion, our results suggest that CFD modeling can assist in predicting hemodynamic parameters prior to treatment, thus facilitating more tailored planning for each patient’s treatment.

References

1.
Toth
,
G.
, and
Cerejo
,
R.
,
2018
, “
Intracranial Aneurysms: Review of Current Science and Management
,”
Vasc. Med.
,
23
(
3
), pp.
276
288
.10.1177/1358863X18754693
2.
Petridis
,
A. K.
,
Kamp
,
M. A.
,
Cornelius
,
J. F.
,
Beez
,
T.
,
Beseoglu
,
K.
,
Turowski
,
B.
, and
Steiger
,
H.-J.
,
2017
, “
Aneurysmal Subarachnoid Hemorrhage: Diagnosis and Treatment
,”
Dtsch. Ärzteblatt Int.
,
114
(
13
), p.
226
.10.3238/arztebl.2017.0226
3.
Li
,
L. M.
,
Bulters
,
D. O.
, and
Kirollos
,
R. W.
,
2012
, “
A Mathematical Model of Utility for Single Screening of Asymptomatic Unruptured Intracranial Aneurysms at the Age of 50 Years
,”
Acta Neurochir.
,
154
(
7
), pp.
1145
1152
.10.1007/s00701-012-1371-8
4.
Taebi
,
A.
,
2022
, “
Deep Learning for Computational Hemodynamics: A Brief Review of Recent Advances
,”
Fluids
,
7
(
6
), p.
197
.10.3390/fluids7060197
5.
Kim
,
J. H.
,
Han
,
H.
,
Moon
,
Y.-J.
,
Suh
,
S.
,
Kwon
,
T.-H.
,
Kim
,
J. H.
,
Chong
,
K.
, et al.,
2020
, “
Hemodynamic Features of Microsurgically Identified, Thin-Walled Regions of Unruptured Middle Cerebral Artery Aneurysms Characterized Using Computational Fluid Dynamics
,”
Neurosurgery
,
86
(
6
), pp.
851
859
.10.1093/neuros/nyz311
6.
Sun
,
H. T.
,
Sze
,
K. Y.
,
Chow
,
K. W.
, and
On Tsang
,
A. C.
,
2022
, “
A Comparative Study on Computational Fluid Dynamic, Fluid-Structure Interaction and Static Structural Analyses of Cerebral Aneurysm
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
262
278
.10.1080/19942060.2021.2013322
7.
Taebi
,
A.
,
Vu
,
C. T.
, and
Roncali
,
E.
,
2021
, “
Multiscale Computational Fluid Dynamics Modeling for Personalized Liver Cancer Radioembolization Dosimetry
,”
ASME J. Biomech. Eng.
,
143
(
1
), p.
011002
.10.1115/1.4047656
8.
Roncali
,
E.
,
Taebi
,
A.
,
Foster
,
C.
, and
Vu
,
C. T.
,
2020
, “
Personalized Dosimetry for Liver Cancer y-90 Radioembolization Using Computational Fluid Dynamics and Monte Carlo Simulation
,”
Ann. Biomed. Eng.
,
48
(
5
), pp.
1499
1510
.10.1007/s10439-020-02469-1
9.
Khalili
,
F.
,
Gamage
,
P. T.
,
Taebi
,
A.
,
Johnson
,
M. E.
,
Roberts
,
R. B.
, and
Mitchel
,
J.
,
2021
, “
Spectral Decomposition and Sound Source Localization of Highly Disturbed Flow Through a Severe Arterial Stenosis
,”
Bioengineering
,
8
(
3
), p.
34
.10.3390/bioengineering8030034
10.
Khalili
,
F.
,
Gamage
,
P. T.
,
Taebi
,
A.
,
Johnson
,
M. E.
,
Roberts
,
R. B.
, and
Mitchell
,
J.
,
2021
, “
Spectral Decomposition of the Flow and Characterization of the Sound Signals Through Stenoses With Different Levels of Severity
,”
Bioengineering
,
8
(
3
), p.
41
.10.3390/bioengineering8030041
11.
Belavadi
,
R.
,
Gudigopuram
,
S. V. R.
,
Raguthu
,
C. C.
,
Gajjela
,
H.
,
Kela
,
I.
,
Kakarala
,
C. L.
,
Hassan
,
M.
, and
Sange
,
I.
,
2021
, “
Surgical Clipping Versus Endovascular Coiling in the Management of Intracranial Aneurysms
,”
Cureus
,
13
(
12
), p.
e20478
.10.7759/cureus.20478
12.
Tang
,
A. Y.-S.
,
Chung
,
W.-C.
,
Liu
,
E. T.-Y.
,
Qu
,
J.-Q.
,
Tsang
,
A. C.-O.
,
Leung
,
G. K.-K.
,
Leung
,
K.-M.
, et al.,
2015
, “
Computational Fluid Dynamics Study of Bifurcation Aneurysms Treated With Pipeline Embolization Device: Side Branch Diameter Study
,”
J. Med. Biol. Eng.
,
35
(
3
), pp.
293
304
.10.1007/s40846-015-0046-3
13.
Schwartz
,
C.
,
Aster
,
H.-C.
,
Al-Schameri
,
R.
,
Müller-Thies-Broussalis
,
E.
,
Griessenauer
,
C. J.
, and
Killer-Oberpfalzer
,
M.
,
2018
, “
Microsurgical Clipping and Endovascular Treatment of Middle Cerebral Artery Aneurysms in an Interdisciplinary Treatment Concept: Comparison of Long-Term Results
,”
Interventional Neuroradiol.
,
24
(
6
), pp.
608
614
.10.1177/1591019918792231
14.
Thompson
,
B. G.
,
Brown
,
R. D.
,
Amin-Hanjani
,
S.
,
Broderick
,
J. P.
,
Cockroft
,
K. M.
,
Connolly
,
E. S.
,
Duckwiler
,
G. R.
, et al.,
2015
, “
Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms: A Guideline for Healthcare Professionals From the american Heart Association/American Stroke Association
,”
Stroke
,
46
(
8
), pp.
2368
2400
.10.1161/STR.0000000000000070
15.
Soler
,
J. P.
, and
Frangi
,
A. F.
, and
@neurIST Consortium, T.
,
2017
, “
Database of Cerebral Artery Geometries Including Aneurysms at the Middle Cerebral Artery Bifurcation
,”.https://figshare.shef.ac.uk/articles/dataset/Database_of_Cerebral_Artery_Geometries_including_Aneurysms_at_the_Middle_Cerebral_Artery_Bifurcation/4806910
16.
Villa-Uriol
,
M. C.
,
Berti
,
G.
,
Hose
,
D. R.
,
Marzo
,
A.
,
Chiarini
,
A.
,
Penrose
,
J.
,
Pozo
,
J.
, et al.,
2011
, “
@Neurist Complex Information Processing Toolchain for the Integrated Management of Cerebral Aneurysms
,”
Interface Focus
,
1
(
3
), pp.
308
319
.10.1098/rsfs.2010.0033
17.
Hang
,
S.
,
2015
, “
Tetgen, a Delaunay-Based Quality Tetrahedral Mesh Generator
,”
ACM Trans. Math. Software
,
41
(
2
), pp. 1–36, Article No. 11.10.1145/2629697
18.
Taebi
,
A.
,
Pillai
,
R. M.
,
S. Roudsari
,
B.
,
Vu
,
C. T.
, and
Roncali
,
E.
,
2020
, “
Computational Modeling of the Liver Arterial Blood Flow for Microsphere Therapy: Effect of Boundary Conditions
,”
Bioengineering
,
7
(
3
), p.
64
.10.3390/bioengineering7030064
19.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
20.
Brindise
,
M. C.
,
Rothenberger
,
S.
,
Dickerhoff
,
B.
,
Schnell
,
S.
,
Markl
,
M.
,
Saloner
,
D.
,
Rayz
,
V. L.
, et al.,
2019
, “
Multi-Modality Cerebral Aneurysm Haemodynamic Analysis: In Vivo 4D Flow MRI, In Vitro Volumetric Particle Velocimetry and in Silico Computational Fluid Dynamics
,”
J. R. Soc., Interface
,
16
(
158
), p.
20190465
.10.1098/rsif.2019.0465
21.
Fukazawa
,
K.
,
Ishida
,
F.
,
Umeda
,
Y.
,
Miura
,
Y.
,
Shimosaka
,
S.
,
Matsushima
,
S.
,
Taki
,
W.
, and
Suzuki
,
H.
,
2015
, “
Using Computational Fluid Dynamics Analysis to Characterize Local Hemodynamic Features of Middle Cerebral Artery Aneurysm Rupture Points
,”
World Neurosurg.
,
83
(
1
), pp.
80
86
.10.1016/j.wneu.2013.02.012
22.
Jansen
,
I.
,
Schneiders
,
J.
,
Potters
,
W.
,
Van Ooij
,
P.
,
Van Den Berg
,
R.
,
Van Bavel
,
E.
,
Marquering
,
H.
, et al.,
2014
, “
Generalized Versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics
,”
Am. J. Neuroradiol.
,
35
(
8
), pp.
1543
1548
.10.3174/ajnr.A3901
23.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, et al.,
2004
, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms
,”
Stroke
,
35
(
11
), pp.
2500
2505
.10.1161/01.STR.0000144648.89172.0f
24.
Zhou
,
G.
,
Zhu
,
Y.
,
Yin
,
Y.
,
Su
,
M.
, and
Li
,
M.
,
2017
, “
Association of Wall Shear Stress With Intracranial Aneurysm Rupture: Systematic Review and Meta-Analysis
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.10.1038/s41598-017-05886-w
25.
Sun
,
L.
,
Wang
,
J.
,
Li
,
M.
,
Li
,
M.
, and
Zhu
,
Y.
,
2020
, “
The Contribution of Wall Shear Stress Insult to the Growth of Small Unruptured Cerebral Aneurysms in Longitudinal 3D-TOF-MRA
,”
J. Neurol. Sci.
,
413
, p.
116798
.10.1016/j.jns.2020.116798
You do not currently have access to this content.