Abstract

The last decade has witnessed major progress in the field of minimally invasive and robotic-assisted surgeries. Needle insertion, a minimally invasive technique, has proven its efficacy in procedures such as brachytherapy, ablation, drug delivery, and biopsy. Manual needle steering inside tissue is a challenging task due to complex needle-tissue interactions, needle and tissue movement, lack of actuation and control, as well as poor sensing and visualization. Recently, active tendon-driven notched needles, and robotic manipulation systems have been proposed to assist surgeons to guide the needles in desired trajectories toward target positions. This work introduces a new deflection model for the active tendon-driven notched needle steering inside soft tissue for intention to use in model-based robotic control. The model is developed to predict needle deflection in a single-layer tissue. To validate the proposed deflection model, five sets of needle insertion experiments with a bevel-tipped active needle into single-layer phantom tissues were performed. A real-time robot-assisted ultrasound tracking method was used to track the needle tip during needle insertion. It was shown that the model predicts needle deflection with an average error of 0.58 ± 0.14 mm for the bevel-tipped active needle insertion into a single-layer phantom tissue.

References

1.
Khadem
,
M.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R. S.
, and
Tavakoli
,
M.
,
2016
, “
Introducing Notched Flexible Needles With Increased Deflection Curvature in Soft Tissue
,” IEEE International Conference on Advanced Intelligent Mechatronics (
AIM
),
Banff, AB, Canada
,
July 12–15
, pp.
1186
1191
.10.1109/AIM.2016.7576931
2.
Konh
,
B.
,
Padasdao
,
B.
,
Batsaikhan
,
Z.
, and
Lederer
,
J.
,
2021
, “
Steering a Tendon-Driven Needle in High-Dose-Rate Prostate Brachytherapy for Patients With Pubic Arch Interference
,” International Symposium on Medical Robotics (
ISMR
),
Atlanta, GA
,
Nov. 17–19
, pp.
1
7
.10.1109/ISMR48346.2021.9661565
3.
Jeong
,
S.
,
Chitalia
,
Y.
, and
Desai
,
J. P.
,
2020
, “
Design, Modeling, and Control of a Coaxially Aligned Steerable (Coast) Guidewire Robot
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4947
4954
.10.1109/LRA.2020.3004782
4.
Chitalia
,
Y. C.
,
Jeong
,
S.
,
Deaton
,
N.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2020
, “
Design and Kinematics Analysis of a Robotic Pediatric Neuroendoscope Tool Body
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
985
995
.10.1109/TMECH.2020.2967748
5.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.10.1109/TRO.2015.2489500
6.
Ertop
,
T. E.
,
D'Almeida
,
J. F.
,
Amanov
,
E.
,
Shrand
,
J.
,
Nimmagadda
,
N.
,
Setia
,
S.
,
Kavoussi
,
N. L.
, et al.,
2022
, “
Towards Suturing From Within the Urethra Using Concentric Tube Robots: First Experiences in Biological Tissues
,” International Symposium on Medical Robotics (
ISMR
),
Atlanta, GA
,
Apr. 13–15
, pp.
1
5
.10.1109/ISMR48347.2022.9807548
7.
Gafford
,
J. B.
,
Webster
,
S.
,
Dillon
,
N.
,
Blum
,
E.
,
Hendrick
,
R.
,
Maldonado
,
F.
,
Gillaspie
,
E. A.
, et al.,
2020
, “
A Concentric Tube Robot System for Rigid Bronchoscopy: A Feasibility Study on Central Airway Obstruction Removal
,”
Ann. Biomed. Eng.
,
48
(
1
), pp.
181
191
.10.1007/s10439-019-02325-x
8.
Varnamkhasti
,
Z. K.
, and
Konh
,
B.
,
2021
, “
Design, Fabrication, and Testing of a Flexible Three-Dimensional Printed Percutaneous Needle With Embedded Actuators
,”
ASME J. Med. Devices
,
15
(
2
), pp.
021007
021016
.10.1115/1.4049398
9.
Varnamkhasti
,
Z. K.
, and
Konh
,
B.
,
2020
, “
Compact 3D-Printed Active Flexible Needle for Percutaneous Procedures
,”
Surg. Innovation
,
27
(
4
), pp.
402
405
.10.1177/1553350620945564
10.
Padasdao
,
B.
,
Varnamkhasti
,
Z. K.
, and
Konh
,
B.
,
2020
, “
3D Steerable Biopsy Needle With a Motorized Manipulation System and Ultrasound Tracking to Navigate Inside Tissue
,”
J. Med. Rob. Res.
,
5
(
03n04
), p.
2150003
.10.1142/S2424905X21500033
11.
Khadem
,
M.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R. S.
, and
Tavakoli
,
M.
,
2017
, “
Semi-Automated Needle Steering in Biological Tissue Using an Ultrasound-Based Deflection Predictor
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
924
938
.10.1007/s10439-016-1736-x
12.
Vrooijink
,
G. J.
,
Abayazid
,
M.
,
Patil
,
S.
,
Alterovitz
,
R.
, and
Misra
,
S.
,
2014
, “
Needle Path Planning and Steering in a Three-Dimensional Non-Static Environment Using Two-Dimensional Ultrasound Images
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1361
1374
.10.1177/0278364914526627
13.
Konh
,
B.
,
Padasdao
,
B.
,
Batsaikhan
,
Z.
, and
Ko
,
S. Y.
,
2021
, “
Integrating Robot-Assisted Ultrasound Tracking and 3D Needle Shape Prediction for Real-Time Tracking of the Needle Tip in Needle Steering Procedures
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
17
(
4
), pp.
1
14
.10.1002/rcs.2272
14.
Carriere
,
J.
,
Rossa
,
C.
,
Sloboda
,
R.
,
Usmani
,
N.
, and
Tavakoli
,
M.
,
2016
, “
Real-Time Needle Shape Prediction in Soft-Tissue Based on Image Segmentation and Particle Filtering
,” IEEE International Conference on Advanced Intelligent Mechatronics (
AIM
),
Banff, AB, Canada
,
July 12–15
, pp.
1204
1209
.10.1109/AIM.2016.7576934
15.
Brumfiel
,
T. A.
,
Sarma
,
A.
, and
Desai
,
J. P.
,
2022
, “
Towards FBG-Based End-Effector Force Estimation for a Steerable Continuum Robot
,” International Symposium on Medical Robotics (
ISMR
),
Atlanta, GA
,
Apr. 13–15
, pp.
1
7
.10.1109/ISMR48347.2022.9807503
16.
Chitalia
,
Y.
,
Deaton
,
N. J.
,
Jeong
,
S.
,
Rahman
,
N.
, and
Desai
,
J. P.
,
2020
, “
Towards FBG-Based Shape Sensing for Micro-Scale and Meso-Scale Continuum Robots With Large Deflection
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1712
1719
.10.1109/LRA.2020.2969934
17.
Karimi
,
S.
, and
Konh
,
B.
,
2022
, “
Kinematics Modelling and Dynamics Analysis of an SMA-Actuated Active Flexible Needle for Feedback-Controlled Manipulation in Phantom
,”
Med. Eng. Phys.
,
107
, p.
103846
.10.1016/j.medengphy.2022.103846
18.
Karimi
,
S.
, and
Konh
,
B.
,
2020
, “
Self-Sensing Feedback Control of Multiple Interacting Shape Memory Alloy Actuators in a 3D Steerable Active Needle
,”
J. Intell. Mater. Syst. Struct.
,
31
(
12
), pp.
1524
1540
.10.1177/1045389X20919971
19.
Chitalia
,
Y.
,
Jeong
,
S.
,
Yamamoto
,
K. K.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2021
, “
Modeling and Control of a 2-DoF Meso-Scale Continuum Robotic Tool for Pediatric Neurosurgery
,”
IEEE Trans. Rob.
,
37
(
2
), pp.
520
531
.10.1109/TRO.2020.3031270
20.
Pacheco
,
N. E.
,
Gafford
,
J. B.
,
Atalla
,
M. A.
,
Webster
,
R. J.
, and
Fichera
,
L.
,
2021
, “
Beyond Constant Curvature: A New Mechanics Model for Unidirectional Notched-Tube Continuum Wrists
,”
J. Med. Rob. Res.
,
06
(
01n02
), pp.
2140004
21400013
.10.1142/S2424905X21400043
21.
Padasdao
,
B.
,
Batsaikhan
,
Z.
,
Lafreniere
,
S.
,
Rabiei
,
M.
, and
Konh
,
B.
,
2022
, “
Modeling and Operator Control of a Robotic Tool for Bidirectional Manipulation in Targeted Prostate Biopsy
,” International Symposium on Medical Robotics (
ISMR
),
Atlanta, GA
,
Apr. 13–15
, pp.
1
7
.10.1109/ISMR48347.2022.9807514
22.
Caleb Rucker
,
D.
, and
Webster
,
R. J.
,
2014
, “
Mechanics of Continuum Robots With External Loading and General Tendon Routing
,”
Springer Tracts Adv. Rob.
,
79
(
6
), pp.
645
654
.10.1007/978-3-642-28572-1
23.
Datla
,
N. V.
,
Konh
,
B.
,
Honarvar
,
M.
,
Podder
,
T. K.
,
Dicker
,
A. P.
,
Yu
,
Y.
, and
Hutapea
,
P.
,
2014
, “
A Model to Predict Deflection of Bevel-Tipped Active Needle Advancing in Soft Tissue
,”
Med. Eng. Phys.
,
36
(
3
), pp.
285
293
.10.1016/j.medengphy.2013.11.006
24.
Roesthuis
,
R. J.
,
Abayazid
,
M.
, and
Misra
,
S.
,
2012
, “
Mechanics-Based Model for Predicting in-Plane Needle Deflection With Multiple Bends
,”
IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Rome, Italy
,
June 24–27
, pp.
69
74
.10.1109/BioRob.2012.6290829
25.
Khadem
,
M.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R. S.
, and
Tavakoli
,
M.
,
2016
, “
A Two-Body Rigid/Flexible Model of Needle Steering Dynamics in Soft Tissue
,”
IEEE/ASME Trans. Mechatron.
,
21
(
5
), pp.
2352
2364
.10.1109/TMECH.2016.2549505
26.
Lehmann
,
T.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R.
, and
Tavakoli
,
M.
,
2017
, “
Deflection Modeling for a Needle Actuated by Lateral Force and Axial Rotation During Insertion in Soft Phantom Tissue
,”
Mechatronics
,
48
, pp.
42
53
.10.1016/j.mechatronics.2017.10.008
27.
US Cancer Statistics Reporting Group [USCS],
2021
, “
USCS Data Visualizations - CDC
,” accessed Aug. 8, 2023, https://gis.cdc.gov/Cancer/USCS/#/AtAGlance/
28.
Wallner
,
K.
,
Ellis
,
W.
,
Russell
,
K.
,
Cavanagh
,
W.
, and
Blasko
,
J.
,
1999
, “
Use of TRUS to Predict Pubic Arch Interference of Prostate Brachytherapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
43
(
3
), pp.
583
585
.10.1016/S0360-3016(98)00459-3
29.
Nickers
,
P.
,
Thissen
,
B.
,
Jansen
,
N.
, and
Deneufbourg
,
J. M.
,
2006
, “
192Ir or 125I Prostate Brachytherapy as a Boost to External Beam Radiotherapy in Locally Advanced Prostatic Cancer: A Dosimetric Point of View
,”
Radiother. Oncol.
,
78
(
1
), pp.
47
52
.10.1016/j.radonc.2005.09.002
30.
Bellon
,
J.
,
Wallner
,
K.
,
Ellis
,
W.
,
Russell
,
K.
,
Cavanagh
,
W.
, and
Blasko
,
J.
,
1999
, “
Use of Pelvic CT Scanning to Evaluate Pubic Arch Interference of Transperineal Prostate Brachytherapy
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
43
(
3
), pp.
579
581
.10.1016/S0360-3016(98)00466-0
31.
Tincher
,
S. A.
,
Kim
,
R. Y.
,
Ezekiel
,
M. P.
,
Zinsli
,
T.
,
Fiveash
,
J. B.
,
Raben
,
D. A.
,
Bueschen
,
A. J.
, and
Urban
,
D. A.
,
2000
, “
Effects of Pelvic Rotation and Needle Angle on Pubic Arch Interference During Transperineal Prostate Implants
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
47
(
2
), pp.
361
363
.10.1016/S0360-3016(00)00434-X
32.
Ryu
,
B.
,
Bax
,
J.
,
Edirisinge
,
C.
,
Lewis
,
C.
,
Chen
,
J.
,
D'Souza
,
D.
,
Fenster
,
A.
, and
Wong
,
E.
,
2012
, “
Prostate Brachytherapy With Oblique Needles to Treat Large Glands and Overcome Pubic Arch Interference
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
83
(
5
), pp.
1463
1472
.10.1016/j.ijrobp.2011.10.012
33.
Garg
,
A.
,
Siauw
,
T.
,
Berenson
,
D.
,
Cunha
,
J. A. M.
,
Hsu
,
I. C.
,
Pouliot
,
J.
,
Stoianovici
,
D.
, and
Goldberg
,
K.
,
2013
, “
Robot-Guided Open-Loop Insertion of Skew-Line Needle Arrangements for High Dose Rate Brachytherapy
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
4
), pp.
948
956
.10.1109/TASE.2013.2276940
34.
Hibbeler
,
R. C.
,
2008
, “
Mechanics of Materials
,”
Mechanics of Materials
,
Prentice Hall
,
Hoboken, NJ
.
35.
Jheng
,
Y. C.
, and
Lin
,
C. L.
,
2017
, “
Fabrication and Testing of Breast Tissue-Mimicking Phantom for Needle Biopsy Cutting - A Pilot Study
,”
ASME
Paper No. DMD2017-3505.10.1115/DMD2017-3505
36.
Datla
,
N. V.
,
Konh
,
B.
,
Koo
,
J.
,
Daniel
,
W. C.
,
Yu
,
Y.
,
Dicker
,
A. P.
,
Podder
,
T. K.
,
Darvish
,
K.
, and
Hutapea
,
P.
,
2014
, “
Polyacrylamide Phantom for Self-Actuating Needle-Tissue Interaction Studies
,”
Med. Eng. Phys.
,
36
(
1
), pp.
140
145
.10.1016/j.medengphy.2013.07.004
37.
Budynas
,
R. G.
,
Nisbett
,
J. K.
, and
Shigley
,
J. E.
,
2018
,
Shigley's Mechanical Engineering Design
,
McGraw-Hill Higher Education
,
New York
.
38.
EPOS4/IDX: Object
,
2023
, “
Torque Actual Value – Maxon Support
,” accessed Aug. 8, 2023, https://support.maxongroup.com/hc/en-us/articles/360011690019-EPOS4-IDX-Object-Torque-actual-value
You do not currently have access to this content.