Abstract

Ultrasound therapy is advantageous because it is a noninvasive treatment for the body. Low-intensity pulsed ultrasound can aid fracture healing. We focus on phased array transducers (PATs) to render force fields and realize the improvement in medical equipment to enhance this therapy. This can both render an arbitrary acoustic field and quickly change it by controlling the output and phase of each transducer. There are some algorithms for controlling PATs; however, the effectiveness of these algorithms is limited at sparse control points. We propose a novel algorithm to control PATs at many and close control points in this research. We compare the proposed algorithm with previous ones and assess the avoidance of negative effects outside the target area. The findings show that the proposed algorithm achieves both excellent reconstruction performance and low computational cost, and it can render an acoustic field sufficient to prevent negative effects on the body.

References

1.
Duarte
,
L. R.
,
1983
, “
The Stimulation of Bone Growth by Ultrasound
,”
Arch. Orthop. Trauma. Surg.
,
101
(
3
), pp.
153
159
.10.1007/BF00436764
2.
Heckman
,
J. D.
,
Ryaby
,
J. P.
,
McCabe
,
J.
,
Frey
,
J. J.
, and
Kilcoyne
,
R. F.
,
1994
, “
Acceleration of Tibial Fracture-Healing by Non-Invasive, Low-Intensity Pulsed Ultrasound
,”
J. Bone Jt. Surg.
,
76
(
1
), pp.
26
34
.10.2106/00004623-199401000-00004
3.
Wang
,
S. J.
,
Lewallen
,
D. G.
,
Bolander
,
M. E.
,
Chao
,
E. Y. S.
,
Ilstrup
,
D. M.
, and
Greenleaf
,
J. F.
,
1994
, “
Low Intensity Ultrasound Treatment Increases Strength in a Rat Femoral Fracture Model
,”
J. Orthop. Res.
,
12
(
1
), pp.
40
47
.10.1002/jor.1100120106
4.
Kokubu
,
T.
,
Matsui
,
N.
,
Fujioka
,
H.
,
Tsunoda
,
M.
, and
Mizuno
,
K.
,
1999
, “
Low Intensity Pulsed Ultrasound Exposure Increases Prostaglandin E2 Production Via the Induction of Cyclooxygenase-2 mRNA in Mouse Osteoblasts
,”
Biochem. Biophys. Res. Commun.
,
256
(
2
), pp.
284
287
.10.1006/bbrc.1999.0318
5.
Sena
,
K.
,
Leven
,
R. M.
,
Mazhar
,
K.
,
Sumner
,
D. R.
, and
Virdi
,
A. S.
,
2005
, “
Early Gene Response to Low-Intensity Pulsed Ultrasound in Rat Osteoblastic Cells
,”
Ultrasound Med. Biol.
,
31
(
5
), pp.
703
708
.10.1016/j.ultrasmedbio.2005.01.013
6.
Tang
,
C. H.
,
Lu
,
D. Y.
,
Tan
,
T. W.
,
Fu
,
W. M.
, and
Yang
,
R. S.
,
2007
, “
Ultrasound Induces Hypoxia-Inducible Factor-1 Activation and Inducible Nitric-Oxide Synthase Expression Through the Integrin/Integrin-Linked Kinase/Akt/Mammalian Target of Rapamycin Pathway in Osteoblasts
,”
J. Biol. Chem.
,
282
(
35
), pp.
25406
25415
.10.1074/jbc.M701001200
7.
Takeuchi
,
R.
,
Ryo
,
A.
,
Komitsu
,
N.
,
Mikuni-Takagaki
,
Y.
,
Fukui
,
A.
,
Takagi
,
Y.
,
Shiraishi
,
T.
, et al.,
2008
, “
Low-Intensity Pulsed Ultrasound Activates the Phosphatidylinositol 3 Kinase/Akt Pathway and Stimulates the Growth of Chondrocytes in Three-Dimensional Cultures: A Basic Science Study
,”
Arthritis Res. Ther.
,
10
(
4
), p.
R77
.10.1186/ar2451
8.
Bandow
,
K.
,
Nishikawa
,
Y.
,
Ohnishi
,
T.
,
Kakimoto
,
K.
,
Soejima
,
K.
,
Iwabuchi
,
S.
,
Kuroe
,
K.
, and
Matsuguchi
,
T.
,
2007
, “
Low-Intensity Pulsed Ultrasound (LIPUS) Induces RANKL, MCP-1, and MIP-1Beta Expression in Osteoblasts Through the Angiotensin II Type 1 Receptor
,”
J. Cell. Physiol.
,
211
(
2
), pp.
392
398
.10.1002/jcp.20944
9.
Nishida
,
T.
,
Shimokawa
,
H.
,
Oi
,
K.
,
Tatewaki
,
H.
,
Uwatoku
,
T.
,
Abe
,
K.
,
Matsumoto
,
Y.
,
Kajihara
,
N.
,
Eto
,
M.
,
Matsuda
,
T.
,
Yasui
,
H.
,
Takeshita
,
A.
, and
Sunagawa
,
K.
,
2004
, “
Extracorporeal Cardiac Shock Wave Therapy Markedly Ameliorates Ischemia-Induced Myocardial Dysfunction in Pigs In Vivo
,”
Circulation
,
110
(
19
), pp.
3055
3061
.10.1161/01.CIR.0000148849.51177.97
10.
Hanawa
,
K.
,
Ito
,
K.
,
Aizawa
,
K.
,
Shindo
,
T.
,
Nishimiya
,
K.
,
Hasebe
,
Y.
,
Tuburaya
,
R.
,
Hasegawa
,
H.
,
Yasuda
,
S.
,
Kanai
,
H.
, and
Shimokawa
,
H.
,
2014
, “
Low-Intensity Pulsed Ultrasound Induces Angiogenesis and Ameliorates Left Ventricular Dysfunction in a Porcine Model of Chronic Myocardial Ischemia
,”
PloS One
,
9
(
8
), p.
e104863
.10.1371/journal.pone.0104863
11.
Shindo
,
T.
,
Ito
,
K.
,
Ogata
,
T.
,
Hatanaka
,
K.
,
Kurosawa
,
R.
,
Eguchi
,
K.
,
Kagaya
,
Y.
, et al.,
2016
, “
Low-Intensity Pulsed Ultrasound Enhances Angiogenesis and Ameliorates Left Ventricular Dysfunction in a Mouse Model of Acute Myocardial Infarction
,”
Arterioscler., Thromb., Vasc. Biol.
,
36
(
6
), pp.
1220
1229
.10.1161/ATVBAHA.115.306477
12.
Katusic
,
Z. S.
, and
Austin
,
S. A.
,
2014
, “
Endothelial Nitric Oxide: Protector of a Healthy Mind
,”
Eur. Heart J.
,
35
(
14
), pp.
888
894
.10.1093/eurheartj/eht544
13.
Eguchi
,
K.
,
Shindo
,
T.
,
Ito
,
K.
,
Ogata
,
T.
,
Kurosawa
,
R.
,
Kagaya
,
Y.
,
Monma
,
Y.
, et al.,
2018
, “
Whole-Brain Low-Intensity Pulsed Ultrasound Therapy Markedly Improves Cognitive Dysfunctions in Mouse Models of Dementia-Crucial Roles of Endothelial Nitric Oxide Synthase
,”
Brain Stimul.
,
11
(
5
), pp.
959
973
.10.1016/j.brs.2018.05.012
14.
Lin
,
W. T.
,
Chen
,
R. C.
,
Lu
,
W. W.
,
Liu
,
S. H.
, and
Yang
,
F. Y.
,
2015
, “
Protective Effects of Low-Intensity Pulsed Ultrasound on Aluminum-Induced Cerebral Damage in Alzheimer's Disease Rat Model
,”
Sci. Rep.
,
5
(
1
), p.
9671
.10.1038/srep09671
15.
Huang
,
S. L.
,
Chang
,
C. W.
,
Lee
,
Y. H.
, and
Yang
,
F. Y.
,
2017
, “
Protective Effect of Low-Intensity Pulsed Ultrasound on Memory Impairment and Brain Damage in a Rat Model of Vascular Dementia
,”
Radiology
,
282
(
1
), pp.
113
122
.10.1148/radiol.2016160095
16.
Jiménez-Gambín
,
S.
,
Jiménez
,
N.
,
Benlloch
,
J. M.
, and
Camarena
,
F.
,
2019
, “
Holograms to Focus Arbitrary Ultrasonic Fields Through the Skull
,”
Phys. Rev. Appl.
,
12
(
1
), p.
014016
.10.1103/PhysRevApplied.12.014016
17.
Baresch
,
D.
, and
Garbin
,
V.
,
2020
, “
Acoustic Trapping of Microbubbles in Complex Environments and Controlled Payload Release
,”
PNAS
,
117
(
27
), pp.
15490
15496
.10.1073/pnas.2003569117
18.
Iwamoto
,
T.
,
Tatezono
,
M.
, and
Shinoda
,
H.
,
2008
, “
Non-Contact Method for Producing Tactile Sensation Using Airborne Ultrasound
,”
Proceedings of the 6th EuroHaptics International Conference
, Madrid, Spain, June 10–13, pp.
504
513
.10.1007/978-3-540-69057-3_64
19.
Hoshi
,
T.
,
Takahashi
,
M.
,
Iwamoto
,
T.
, and
Shinoda
,
H.
,
2010
, “
Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound
,”
IEEE Trans. Haptics
,
3
(
3
), pp.
155
165
.10.1109/TOH.2010.4
20.
Long
,
B.
,
Seah
,
S. A.
,
Carter
,
T.
, and
Subramanian
,
S.
,
2014
, “
Rendering Volumetric Haptic Shapes in Mid-Air Using Ultrasound
,”
ACM Trans. Graphics
,
33
(
6
), pp.
1
10
.10.1145/2661229.2661257
21.
Ochiai
,
Y.
,
Hoshi
,
T.
, and
Rekimoto
,
J.
,
2014
, “
Pixie Dust: Graphics Generated by Levitated and Animated Objects in Computational Acoustic-Potential Field
,”
ACM Trans. Graphics
,
33
(
4
), pp.
1
13
.10.1145/2601097.2601118
22.
Marzo
,
A.
,
Seah
,
S. A.
,
Drinkwater
,
B. W.
,
Sahoo
,
D. R.
,
Long
,
B.
, and
Subramanian
,
S.
,
2015
, “
Holographic Acoustic Elements for Manipulation of Levitated Objects
,”
Nat. Commun.
,
6
(
1
), p.
8661
.10.1038/ncomms9661
23.
Hirayama
,
R.
,
Plasencia
,
D. M.
,
Masuda
,
N.
, and
Subramanian
,
S.
,
2019
, “
A Volumetric Display for Visual, Tactile and Audio Presentation Using Acoustic Trapping
,”
Nature
,
575
(
7782
), pp.
320
323
.10.1038/s41586-019-1739-5
24.
Marzo
,
A.
, and
Drinkwater
,
B. W.
,
2019
, “
Holographic Acoustic Tweezers
,”
PNAS
,
116
(
1
), pp.
84
89
.10.1073/pnas.1813047115
25.
Paneva
,
V.
,
Fleig
,
A.
,
Plasencia
,
D. M.
,
Faulwasser
,
T.
, and
Müller
,
J.
,
2022
, “
OptiTrap: Optimal Trap Trajectories for Acoustic Levitation Displays
,”
ACM Trans. Graphics
,
41
(
5
), pp.
1
14
.10.1145/3517746
26.
Plasencia
,
D. M.
,
Hirayama
,
R.
,
Montano-Murillo
,
R.
, and
Subramanian
,
S.
,
2020
, “
GS-PAT: High-Speed Multi-Point Sound-Fields for Phased Arrays of Transducers
,”
ACM Trans. Graphics
,
39
(
4
), pp.
1
12
.10.1145/3386569.3392492
27.
Fushimi
,
T.
,
Yamamoto
,
K.
, and
Ochiai
,
Y.
,
2021
, “
Acoustic Hologram Optimisation Using Automatic Differentiation
,”
Sci. Rep.
,
11
(
1
), p.
12678
.10.1038/s41598-021-91880-2
28.
Gerchberg
,
R. W.
, and
Saxton
,
W. O.
,
1972
, “
A Practical Algorithm for the Determination of Phase From Image and Diffraction Plane Pictures
,”
Optik
,
35
(
2
), pp.
237
246
.https://www.scinapse.io/papers/1484412996
29.
Goodman
,
J. W.
,
1996
,
Introduction to Fourier Optics
,
McGraw-Hill
,
New York
.
30.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
Proceedings of the 3rd International Conference for Learning Representations
, San Diego, CA, May 7–9, e-print arXiv:1412.6980.https://www.researchgate.net/publication/269935079_Adam_A_Method_for_Stochastic_Optimization
31.
Melde
,
K.
,
Mark
,
A. G.
,
Qiu
,
T.
, and
Fischer
,
P.
,
2016
, “
Holograms for Acoustics
,”
Nature
,
537
(
7621
), pp.
518
522
.10.1038/nature19755
32.
Hase
,
T.
, and
Shiraishi
,
T.
,
2018
, “
A Study of Levitation by Acoustic Holography
,”
Proceedings of the Dynamics and Design Conference
, Fukuoka, Japan, Aug. 28–31, Paper No. 339.
33.
O'Neil
,
H. T.
,
1949
, “
Theory of Focusing Radiators
,”
J. Acoust. Soc. Am.
,
21
(
5
), pp.
516
526
.10.1121/1.1906542
34.
TEIJIN PHARMA LIMITED,
2023
, “
SAFHS Exogen
,” Pharmaceuticals and Medical Devices Agency, Tokyo, Japan, accessed June 8, 2023, https://www.pmda.go.jp/PmdaSearch/kikiDetail/ResultDataSetPDF/470310_227ADBZX00180000_A_03_01
35.
Hadjiargyrou
,
M.
,
McLeod
,
K.
,
Ryaby
,
J. P.
, and
Rubin
,
C.
,
1998
, “
Enhancement of Fracture Healing by Low Intensity Ultrasound
,”
Clin. Orthop. Relat. Res.
,
355S
, pp.
S216
S229
.10.1097/00003086-199810001-00022
36.
Claes
,
L.
, and
Willie
,
B.
,
2007
, “
The Enhancement of Bone Regeneration by Ultrasound
,”
Prog. Biophys. Mol. Biol.
,
93
(
1–3
), pp.
384
398
.10.1016/j.pbiomolbio.2006.07.021
37.
Japanese Industrial Standards
,
1984
, “
Manual Scanning B-Mode Ultrasonic Diagnostic Equipment
,” JIS, Tokyo, Japan, Standard No. JIS T-1504.
You do not currently have access to this content.