Abstract

In this work, a theoretical growth model for maintaining a homeostatic mechanical environment was developed to capture the growth behavior of the artery and its association with its mechanical environment. The multiplicative decomposition approach was adopted to decompose the deformation matrix into an elastic term and a growth term. A growth factor relating to homeostatic stress was used to regulate the progressive changes in the arterial morphology. In addition, a growth coefficient was adopted to avoid unlimited growth. The arterial growth model was implemented in a commercial finite element software and tested in the cases of hypertension and stenting. Results have demonstrated that the arterial growth induced by hypertension can mitigate abnormal arterial stresses and restore the stress level in the artery back to its homeostasis. Following stenting, the arterial growth pattern was consistent with the distribution of the von Mises stresses in the artery. The arterial growth homogenized the stress distribution in the artery, except for the regions under the stent struts. The heterogeneous growth of the artery disrupted the alignment of the maximum principal stresses in the artery, elongated the stent, reduced the lumen area, and aggregated the tissue prolapse. It is expected that the growth model developed in this work could help to understand and regulate the chronic response of the tissue. Appropriate modeling of arterial growth in connection with tensional homeostasis provided insights for predicting alterations to the arterial mechanical environment, identifying biomechanical factors leading to restenosis, and designing therapeutic strategies to regulate the tissue adaptations.

References

1.
Marx
,
S. O.
,
Totary-Jain
,
H.
, and
Marks
,
A. R.
,
2011
, “
Vascular Smooth Muscle Cell Proliferation in Restenosis
,”
Circ.: Cardiovasc. Interventions
,
4
(
1
), pp.
104
111
.10.1161/CIRCINTERVENTIONS.110.957332
2.
Mitra
,
A. K.
, and
Agrawal
,
D. K.
,
2006
, “
In Stent Restenosis: Bane of the Stent Era
,”
J. Clin. Pathol.
,
59
(
3
), pp.
232
239
.10.1136/jcp.2005.025742
3.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Effects of Arterial Strain and Stress in the Prediction of Restenosis Risk: Computer Modeling of Stent Trials
,”
Biomed. Eng. Lett.
,
2
(
3
), pp.
158
163
.10.1007/s13534-012-0067-6
4.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
,
2005
, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
.10.1016/j.jbiomech.2004.07.022
5.
Dangas
,
G. D.
,
Claessen
,
B. E.
,
Caixeta
,
A.
,
Sanidas
,
E. A.
,
Mintz
,
G. S.
, and
Mehran
,
R.
,
2010
, “
In-Stent Restenosis in the Drug-Eluting Stent Era
,”
J. Am. Coll. Cardiol.
,
56
(
23
), pp.
1897
1907
.10.1016/j.jacc.2010.07.028
6.
Kim
,
Y.-H.
,
Lee
,
B.-K.
,
Park
,
D.-W.
,
Park
,
K.-H.
,
Choi
,
B.-R.
,
Lee
,
C. W.
,
Hong
,
M.-K.
,
Kim
,
J.-J.
,
Park
,
S.-W.
, and
Park
,
S.-J.
,
2006
, “
Comparison With Conventional Therapies of Repeated Sirolimus-Eluting Stent Implantation for the Treatment of Drug-Eluting Coronary Stent Restenosis
,”
Am. J. Cardiol.
,
98
(
11
), pp.
1451
1454
.10.1016/j.amjcard.2006.07.027
7.
Kang
,
S.-H.
,
Park
,
K. W.
,
Kang
,
D.-Y.
,
Lim
,
W.-H.
,
Park
,
K. T.
,
Han
,
J.-K.
,
Kang
,
H.-J.
, et al.,
2014
, “
Biodegradable-Polymer Drug-Eluting Stents vs. Bare Metal Stents vs. Durable-Polymer Drug-Eluting Stents: A Systematic Review and Bayesian Approach Network Meta-Analysis
,”
Eur. Heart J.
,
35
(
17
), pp.
1147
1158
.10.1093/eurheartj/eht570
8.
Ambrosi
,
D.
,
Ateshian
,
G. A.
,
Arruda
,
E. M.
,
Cowin
,
S. C.
,
Dumais
,
J.
,
Goriely
,
A.
,
Holzapfel
,
G. A.
, et al.,
2011
, “
Perspectives on Biological Growth and Remodeling
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
863
883
.10.1016/j.jmps.2010.12.011
9.
Chen
,
H. Y.
,
Hermiller
,
J.
,
Sinha
,
A. K.
,
Sturek
,
M.
,
Zhu
,
L.
, and
Kassab
,
G. S.
,
2009
, “
Effects of Stent Sizing on Endothelial and Vessel Wall Stress: Potential Mechanisms for In-Stent Restenosis
,”
J. Appl. Physiol.
,
106
(
5
), pp.
1686
1691
.10.1152/japplphysiol.91519.2008
10.
Farb
,
A.
,
Weber
,
D. K.
,
Kolodgie
,
F. D.
,
Burke
,
A. P.
, and
Virmani
,
R.
,
2002
, “
Morphological Predictors of Restenosis After Coronary Stenting in Humans
,”
Circulation
,
105
(
25
), pp.
2974
2980
.10.1161/01.CIR.0000019071.72887.BD
11.
Jenei
,
C.
,
Balogh
,
E.
,
Szabó
,
G. T.
,
Dézsi
,
C. A.
, and
Kőszegi
,
Z.
,
2016
, “
Wall Shear Stress in the Development of In-Stent Restenosis Revisited. A Critical Review of Clinical Data on Shear Stress After Intracoronary Stent Implantation
,”
Cardiol. J.
,
23
(
4
), pp.
365
373
.10.5603/CJ.a2016.0047
12.
Zhao
,
S.
, and
Gu
,
L.
,
2013
, “
Artery Remodeling in Hypotension Using a Topology Optimization Method
,”
ASME J. Med. Devices
,
7
(
3
), p.
030929
.10.1115/1.4024518
13.
Boland
,
E. L.
,
Grogan
,
J. A.
, and
McHugh
,
P. E.
,
2019
, “
Computational Modelling of Magnesium Stent Mechanical Performance in a Remodelling Artery: Effects of Multiple Remodelling Stimuli
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
10
), p.
e3247
.10.1002/cnm.3247
14.
Nolan
,
D. R.
, and
Lally
,
C.
,
2018
, “
An Investigation of Damage Mechanisms in Mechanobiological Models of In-Stent Restenosis
,”
J. Comput. Sci.
,
24
, pp.
132
142
.10.1016/j.jocs.2017.04.009
15.
Zahedmanesh
,
H.
,
Van Oosterwyck
,
H.
, and
Lally
,
C.
,
2014
, “
A Multi-Scale Mechanobiological Model of In-Stent Restenosis: Deciphering the Role of Matrix Metalloproteinase and Extracellular Matrix Changes
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
8
), pp.
813
828
.10.1080/10255842.2012.716830
16.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2004
, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
,
41
(
4
), pp.
352
363
.10.1159/000080699
17.
Humphrey
,
J. D.
,
2021
, “
Constrained Mixture Models of Soft Tissue Growth and Remodeling—Twenty Years After
,”
J. Elasticity
,
145
(
1–2
), pp.
49
75
.10.1007/s10659-020-09809-1
18.
Ambrosi
,
D.
,
Ben Amar
,
M.
,
Cyron
,
C. J.
,
DeSimone
,
A.
,
Goriely
,
A.
,
Humphrey
,
J. D.
, and
Kuhl
,
E.
,
2019
, “
Growth and Remodelling of Living Tissues: Perspectives,Challenges and Opportunities
,”
J. R. Soc., Interface
,
16
(
157
), p.
20190233
.10.1098/rsif.2019.0233
19.
Zhao
,
S.
, and
Gu
,
L.
,
2014
, “
Implementation and Validation of Aortic Remodeling in Hypertensive Rats
,”
ASME J. Biomech. Eng.
,
136
(
9
), p.
091007
.10.1115/1.4027939
20.
Lee
,
L. C.
,
Genet
,
M.
,
Acevedo-Bolton
,
G.
,
Ordovas
,
K.
,
Guccione
,
J. M.
, and
Kuhl
,
E.
,
2015
, “
A Computational Model That Predicts Reverse Growth in Response to Mechanical Unloading
,”
Biomech. Model. Mechanobiol.
,
14
(
2
), pp.
217
229
.10.1007/s10237-014-0598-0
21.
Genet
,
M.
,
Rausch
,
M. K.
,
Lee
,
L. C.
,
Choy
,
S.
,
Zhao
,
X.
,
Kassab
,
G. S.
,
Kozerke
,
S.
,
Guccione
,
J. M.
, and
Kuhl
,
E.
,
2015
, “
Heterogeneous Growth-Induced Prestrain in the Heart
,”
J. Biomech.
,
48
(
10
), pp.
2080
2089
.10.1016/j.jbiomech.2015.03.012
22.
Kuhl
,
E.
,
Maas
,
R.
,
Himpel
,
G.
, and
Menzel
,
A.
,
2007
, “
Computational Modeling of Arterial Wall Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
5
), pp.
321
331
.10.1007/s10237-006-0062-x
23.
Kuhl
,
E.
,
2014
, “
Growing Matter: A Review of Growth in Living Systems
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
529
543
.10.1016/j.jmbbm.2013.10.009
24.
Fereidoonnezhad
,
B.
,
Naghdabadi
,
R.
,
Sohrabpour
,
S.
, and
Holzapfel
,
G. A.
,
2017
, “
A Mechanobiological Model for Damage-Induced Growth in Arterial Tissue With Application to In-Stent Restenosis
,”
J. Mech. Phys. Solids
,
101
, pp.
311
327
.10.1016/j.jmps.2017.01.016
25.
He
,
R.
,
Zhao
,
L.
,
Silberschmidt
,
V. V.
, and
Liu
,
Y.
,
2020
, “
Mechanistic Evaluation of Long-Term In-Stent Restenosis Based on Models of Tissue Damage and Growth
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1425
1446
.10.1007/s10237-019-01279-2
26.
Lubarda
,
V. A.
, and
Hoger
,
A.
,
2002
, “
On the Mechanics of Solids With a Growing Mass
,”
Int. J. Solids Struct.
,
39
(
18
), pp.
4627
4664
.10.1016/S0020-7683(02)00352-9
27.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Shojaei
,
A.
,
Hassani
,
K.
, and
Faghihi
,
S.
,
2014
, “
Study of Plaque Vulnerability in Coronary Artery Using Mooney–Rivlin Model: A Combination of Finite Element and Experimental Method
,”
Biomed. Eng.: Appl., Basis Commun.
,
26
(
01
), p.
1450013
.10.4015/S1016237214500136
28.
Buccheri
,
D.
,
Piraino
,
D.
,
Andolina
,
G.
, and
Cortese
,
B.
,
2016
, “
Understanding and Managing In-Stent Restenosis: A Review of Clinical Data, From Pathogenesis to Treatment
,”
J. Thorac. Dis.
,
8
(
10
), pp.
E1150
E1162
.10.21037/jtd.2016.10.93
29.
Varnava
,
A. M.
,
Mills
,
P. G.
, and
Davies
,
M. J.
,
2002
, “
Relationship Between Coronary Artery Remodeling and Plaque Vulnerability
,”
Circulation
,
105
(
8
), pp.
939
943
.10.1161/hc0802.104327
30.
Papastavrou
,
A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2013
, “
On the Mechanics of Continua With Boundary Energies and Growing Surfaces
,”
J. Mech. Phys. Solids
,
61
(
6
), pp.
1446
1463
.10.1016/j.jmps.2013.01.007
You do not currently have access to this content.