Abstract

There is fusion between two leaflets in functionally bicuspid (bileaflet) aortic valves with trisinuate aortic root. The degree of fusion inversely correlates with variation in the interleaflet triangle height (“commissural height”). We aimed to determine the hemodynamics and biomechanical response in the thoracic aorta due to variations in the commissural height between fused leaflets in a bicuspid aortic valve with raphe. A three-dimensional (3D) aortic valve model was reconstructed using cardiac magnetic resonance (CMR) imaging from a patient with a normal trileaflet aortic valve. Fluid–structure interaction (FSI) simulations were used to investigate the effect of variation in commissural height between the coronary leaflets with leaflet fusion, and this was contrasted to a case with a normal trileaflet valve. Phase-contrast CMR was used for validation of the simulated hemodynamics. The aorta and leaflet tissues were treated as hyperelastic materials. In the normal trileaflet aortic valve, two counter-rotating vortex cores develop within the root at peak systole and interact with the walls of the ascending aorta. However, in the bicuspid aortic valve with fusion between the coronary leaflets, the vortex system becomes more asymmetric. This correlates with more recirculation of flow toward the fusion side of the aortic root. The peak velocity, pressure gradient, wall shear stress, and strain levels increase approximately linear with decreasing commissural height and increasing leaflet fusion. Decreasing interleaflet triangle height between the fused leaflets in bicuspid aortic valves with raphe results in linear elevation of wall shear stress at the sinutubular junction and proximal ascending aorta.

References

1.
Nistri
,
S.
,
Basso
,
C.
,
Marzari
,
C.
,
Mormino
,
P.
, and
Thiene
,
G.
,
2005
, “
Frequency of Bicuspid Aortic Valve in Young Male Conscripts by Echocardiogram
,”
Am. J. Cardiol.
,
96
(
5
), pp.
718
721
.10.1016/j.amjcard.2005.04.051
2.
Basso
,
C.
,
Boschello
,
M.
,
Perrone
,
C.
,
Mecenero
,
A.
,
Cera
,
A.
,
Bicego
,
D.
,
Thiene
,
G.
, and
De Dominicis
,
E.
,
2004
, “
An Echocardiographic Survey of Primary School Children for Bicuspid Aortic Valve
,”
Am. J. Cardiol.
,
93
(
5
), pp.
661
663
.10.1016/j.amjcard.2003.11.031
3.
Tretter
,
J. T.
,
Spicer
,
D. E.
,
Mori
,
S.
,
Chikkabyrappa
,
S.
,
Redington
,
A. N.
, and
Anderson
,
R. H.
,
2016
, “
The Significance of the Interleaflet Triangles in Determining the Morphology of Congenitally Abnormal Aortic Valves: Implications for Noninvasive Imaging and Surgical Management
,”
J. Am. Soc. Echocardiogr.
,
29
(
12
), pp.
1131
1143
.10.1016/j.echo.2016.08.017
4.
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Chatterjee
,
K.
,
de Leon
,
A. C.
,
Faxon
,
D. P.
,
Freed
,
M. D.
, and
Gaasch
,
W. H.
, et al.,
2006
, “
ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease
,”
Circulation
,
114
(
5
), pp.
84
231
.10.1161/CIRCULATIONAHA.106.176857
5.
Cohen
,
L. S.
,
Friedman
,
W. F.
, and
Braunwald
,
E.
,
1972
, “
Natural History of Mild Congenital Aortic Stenosis Elucidated by Serial Hemodynamic Studies
,”
Am. J. Cardiol.
,
30
(
1
), pp.
1
5
.10.1016/0002-9149(72)90116-6
6.
Saikrishnan
,
N.
,
Kumar
,
G.
,
Sawaya
,
F. J.
,
Lerakis
,
S.
, and
Yoganathan
,
A. P.
,
2014
, “
Accurate Assessment of Aortic Stenosis
,”
Circulation
,
129
(
2
), pp.
244
253
.10.1161/CIRCULATIONAHA.113.002310
7.
Evangelista
,
A.
,
Gallego
,
P.
,
Calvo-Iglesias
,
F.
,
Bermejo
,
J.
,
Robledo-Carmona
,
J.
,
Sánchez
,
V.
, and
Saura
,
D.
, et al.,
2018
, “
Anatomical and Clinical Predictors of Valve Dysfunction and Aortic Dilation in Bicuspid Aortic Valve Disease
,”
Heart
,
104
(
7
), pp.
566
573
.10.1136/heartjnl-2017-311560
8.
Robicsek
,
F.
,
Thubrikar
,
M. J.
,
Cook
,
J. W.
, and
Fowler
,
B.
,
2004
, “
The Congenitally Bicuspid Aortic Valve: How Does It Function? Why Does It Fail?
,”
Ann. Thorac. Surg.
,
77
(
1
), pp.
177
185
.10.1016/S0003-4975(03)01249-9
9.
Schäfers
,
H.-J.
,
2019
, “
The 10 Commandments for Aortic Valve Repair
,”
Innovations: Technol. Tech. Cardiothorac. Vasc. Surg.
,
14
(
3
), pp.
188
198
.10.1177/1556984519843909
10.
Tretter
,
J. T.
,
Izawa
,
Y.
,
Spicer
,
D. E.
,
Okada
,
K.
,
Anderson
,
R. H.
,
Quintessenza
,
J. A.
, and
Mori
,
S.
,
2021
, “
Understanding the Aortic Root Using Computed Tomographic Assessment: A Potential Pathway to Improved Customized Surgical Repair
,”
Circ.: Cardiovasc. Imaging
,
14
(
11
), p.
e013134
.10.1161/CIRCIMAGING.121.013134
11.
Chen
,
J.
,
Gutmark
,
E.
,
Mylavarapu
,
G.
,
Backeljauw
,
P. F.
, and
Gutmark-Little
,
I.
,
2014
, “
Numerical Investigation of Mass Transport Through Patient-Specific Deformed Aortae
,”
J. Biomech.
,
47
(
2
), pp.
544
552
.10.1016/j.jbiomech.2013.10.031
12.
Prahl Wittberg
,
L.
,
van Wyk
,
S.
,
Fuchs
,
L.
,
Gutmark
,
E.
,
Backeljauw
,
P.
, and
Gutmark-Little
,
I.
,
2016
, “
Effects of Aortic Irregularities on Blood Flow
,”
Biomech. Model. Mechanobiol.
,
15
(
2
), pp.
345
360
.10.1007/s10237-015-0692-y
13.
Singh
,
S. D.
,
Xu
,
X. Y.
,
Wood
,
N. B.
,
Pepper
,
J. R.
,
Izgi
,
C.
,
Treasure
,
T.
, and
Mohiaddin
,
R. H.
,
2016
, “
Aortic Flow Patterns Before and After Personalised External Aortic Root Support Implantation in Marfan Patients
,”
J. Biomech.
,
49
(
1
), pp.
100
111
.10.1016/j.jbiomech.2015.11.040
14.
Deng
,
X.
,
Liu
,
X.
,
Li
,
D.
,
Pu
,
F.
,
Li
,
S.
, and
Fan
,
Y.
,
2009
, “
A Numerical Study on the Flow of Blood and the Transport of LDL in the Human Aorta: The Physiological Significance of the Helical Flow in the Aortic Arch
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
297
(
1
), pp.
H163
H170
.10.1152/ajpheart.00266.2009
15.
Mei
,
S.
,
de Souza Júnior
,
F. S. N.
,
Kuan
,
M. Y. S.
,
Green
,
N. C.
, and
Espino
,
D. M.
,
2016
, “
Hemodynamics Through the Congenitally Bicuspid Aortic Valve: A Computational Fluid Dynamics Comparison of Opening Orifice Area and Leaflet Orientation
,”
Perfusion
,
31
(
8
), pp.
683
690
.10.1177/0267659116656775
16.
Kimura
,
N.
,
Nakamura
,
M.
,
Komiya
,
K.
,
Nishi
,
S.
,
Yamaguchi
,
A.
,
Tanaka
,
O.
,
Misawa
,
Y.
,
Adachi
,
H.
, and
Kawahito
,
K.
,
2017
, “
Patient-Specific Assessment of Hemodynamics by Computational Fluid Dynamics in Patients With Bicuspid Aortopathy
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
4
), pp.
S52
S62.e3
.10.1016/j.jtcvs.2016.12.033
17.
Youssefi
,
P.
,
Gomez
,
A.
,
He
,
T.
,
Anderson
,
L.
,
Bunce
,
N.
,
Sharma
,
R.
,
Figueroa
,
C. A.
, and
Jahangiri
,
M.
,
2017
, “
Patient-Specific Computational Fluid Dynamics—Assessment of Aortic Hemodynamics in a Spectrum of Aortic Valve Pathologies
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
1
), pp.
8
20.e3
.10.1016/j.jtcvs.2016.09.040
18.
Lantz
,
J.
,
Gårdhagen
,
R.
, and
Karlsson
,
M.
,
2012
, “
Quantifying Turbulent Wall Shear Stress in a Subject Specific Human Aorta Using Large Eddy Simulation
,”
Med. Eng. Phys.
,
34
(
8
), pp.
1139
1148
.10.1016/j.medengphy.2011.12.002
19.
Evegren
,
P.
,
Revstedt
,
J.
, and
Fuchs
,
L.
,
2011
, “
Pulsating Flow and Mass Transfer in an Asymmetric System of Bifurcations
,”
Comput. Fluids
,
49
(
1
), pp.
46
61
.10.1016/j.compfluid.2011.04.015
20.
van Wyk
,
S.
,
Prahl Wittberg
,
L.
, and
Fuchs
,
L.
,
2013
, “
Wall Shear Stress Variations and Unsteadiness of Pulsatile Blood-Like Flows in 90-Degree Bifurcations
,”
Comput. Biol. Med.
,
43
(
8
), pp.
1025
1036
.10.1016/j.compbiomed.2013.05.008
21.
Karimi
,
S.
,
Dabagh
,
M.
,
Vasava
,
P.
,
Dadvar
,
M.
,
Dabir
,
B.
, and
Jalali
,
P.
,
2014
, “
Effect of Rheological Models on the Hemodynamics Within Human Aorta: CFD Study on CT Image-Based Geometry
,”
J. Non-Newtonian Fluid Mech.
,
207
, pp.
42
52
.10.1016/j.jnnfm.2014.03.007
22.
Nathan
,
D. P.
,
Xu
,
C.
,
Gorman
,
J. H.
,
Fairman
,
R. M.
,
Bavaria
,
J. E.
,
Gorman
,
R. C.
,
Chandran
,
K. B.
, and
Jackson
,
B. M.
,
2011
, “
Pathogenesis of Acute Aortic Dissection: A Finite Element Stress Analysis
,”
Ann. Thorac. Surg.
,
91
(
2
), pp.
458
463
.10.1016/j.athoracsur.2010.10.042
23.
Nathan
,
D. P.
,
Xu
,
C.
,
Plappert
,
T.
,
Desjardins
,
B.
,
Gorman
,
J. H.
,
Bavaria
,
J. E.
,
Gorman
,
R. C.
,
Chandran
,
K. B.
, and
Jackson
,
B. M.
,
2011
, “
Increased Ascending Aortic Wall Stress in Patients With Bicuspid Aortic Valves
,”
Ann. Thorac. Surg.
,
92
(
4
), pp.
1384
1389
.10.1016/j.athoracsur.2011.04.118
24.
Sundström
,
E.
,
Jonnagiri
,
R.
,
Gutmark-Little
,
I.
,
Gutmark
,
E.
,
Critser
,
P.
,
Taylor
,
M. D.
, and
Tretter
,
J. T.
,
2020
, “
Effects of Normal Variation in the Rotational Position of the Aortic Root on Hemodynamics and Tissue Biomechanics of the Thoracic Aorta
,”
Cardiovasc. Eng. Technol.
,
11
(
1
), pp.
47
58
.10.1007/s13239-019-00441-2
25.
Sundström
,
E.
,
Jonnagiri
,
R.
,
Gutmark‐Little
,
I.
,
Gutmark
,
E.
,
Critser
,
P.
,
Taylor
,
M. D.
, and
Tretter
,
J. T.
,
2020
, “
Hemodynamics and Tissue Biomechanics of the Thoracic Aorta With a Trileaflet Aortic Valve at Different Phases of Valve Opening
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
7
), p.
e3345
.10.1002/cnm.3345
26.
Mao
,
W.
,
Li
,
K.
, and
Sun
,
W.
,
2016
, “
Fluid–Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics
,”
Cardiovasc. Eng. Technol.
,
7
(
4
), pp.
374
388
.10.1007/s13239-016-0285-7
27.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J. C.
,
Pujol
,
S.
,
Bauer
,
C.
, et al.,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
28.
Nestola
,
M. G. C.
,
Faggiano
,
E.
,
Vergara
,
C.
,
Lancellotti
,
R. M.
,
Ippolito
,
S.
,
Antona
,
C.
,
Filippi
,
S.
,
Quarteroni
,
A.
, and
Scrofani
,
R.
,
2017
, “
Computational Comparison of Aortic Root Stresses in Presence of Stentless and Stented Aortic Valve Bio-Prostheses
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
2
), pp.
171
181
.10.1080/10255842.2016.1207171
29.
Rosero
,
E. B.
,
Peshock
,
R. M.
,
Khera
,
A.
,
Clagett
,
P.
,
Lo
,
H.
, and
Timaran
,
C. H.
,
2011
, “
Sex, Race, and Age Distributions of Mean Aortic Wall Thickness in a Multiethnic Population-Based Sample
,”
J. Vasc. Surg.
,
53
(
4
), pp.
950
957
.10.1016/j.jvs.2010.10.073
30.
Sundström
,
E.
, and
Oren
,
L.
,
2019
, “
Pharyngeal Flow Simulations During Sibilant Sound in a Patient-Specific Model With Velopharyngeal Insufficiency
,”
J. Acoust. Soc. Am.
,
145
(
5
), pp.
3137
3145
.10.1121/1.5108889
31.
Sundström
,
E.
, and
Oren
,
L.
,
2019
, “
Sound Production Mechanisms of Audible Nasal Emission During the Sibilant /S/
,”
J. Acoust. Soc. Am.
,
146
(
6
), pp.
4199
4210
.10.1121/1.5135566
32.
Sundström
,
E.
,
Boyce
,
S.
, and
Oren
,
L.
,
2020
, “
Effects of Velopharyngeal Openings on Flow Characteristics of Nasal Emission
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1447
1459
.10.1007/s10237-019-01280-9
33.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
1/3
), pp.
1
48
.10.1023/A:1010835316564
34.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1991
, “
Quasi-Incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
85
(
3
), pp.
273
310
.10.1016/0045-7825(91)90100-K
35.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
36.
Pasta
,
S.
,
Rinaudo
,
A.
,
Angelo
,
L.
,
Pilato
,
M.
,
Scadulla
,
C.
,
Gleason
,
T. G.
, and
Vorp
,
D. A.
,
2013
, “
Difference in Hemodynamic and Wall Stress of Ascending Thoracic Aortic Aneurysm With Bicuspid and Tricuspid Aortic Valve
,”
J. Biomech.
,
42
(
2
), pp.
157
162
.10.1016/j.jbiomech.2013.03.029
37.
Marom
,
G.
,
Peleg
,
M.
,
Halevi
,
R.
,
Rosenfeld
,
M.
,
Raanani
,
E.
,
Hamdan
,
A.
, and
Haj-Ali
,
R.
,
2013
, “
Fluid-Structure Interaction Model of Aortic Valve With Porcine-Specific Collagen Fiber Alignment in the Cusps
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101001
.10.1115/1.4024824
38.
Aggarwal
,
A.
, and
Sacks
,
M. S.
,
2016
, “
An Inverse Modeling Approach for Semilunar Heart Valve Leaflet Mechanics: Exploitation of Tissue Structure
,”
Biomech. Model. Mechanobiol.
,
15
(
4
), pp.
909
932
.10.1007/s10237-015-0732-7
39.
Mirnajafi
,
A.
,
Raymer
,
J.
,
Scott
,
M. J.
, and
Sacks
,
M. S.
,
2005
, “
The Effects of Collagen Fiber Orientation on the Flexural Properties of Pericardial Heterograft Biomaterials
,”
Biomaterials
,
26
(
7
), pp.
795
804
.10.1016/j.biomaterials.2004.03.004
40.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Fox
,
D.
,
2013
,
The Finite Element Method for Solid and Structural Mechanics
, 7th ed., Butterworth-Heinemann Elsevier Ltd, Oxford, UK.
41.
Pope
,
S. B.
,
2001
,
Turbulent Flows
, Cambridge University Press, Cambridge, UK.
42.
Pasta
,
S.
,
Gentile
,
G.
,
Raffa
,
G. M.
,
Bellavia
,
D.
,
Chiarello
,
G.
,
Liotta
,
R.
,
Luca
,
A.
,
Scardulla
,
C.
, and
Pilato
,
M.
,
2017
, “
In Silico Shear and Intramural Stresses Are Linked to Aortic Valve Morphology in Dilated Ascending Aorta
,”
Eur. J. Vasc. Endovasc. Surg.
,
54
(
2
), pp.
254
263
.10.1016/j.ejvs.2017.05.016
43.
Tretter
,
J. T.
, and
Mori
,
S.
,
2019
, “
Two-Dimensional Imaging of a Complex Three-Dimensional Structure: Measurements of Aortic Root Dimensions
,”
J. Am. Soc. Echocardiogr.
,
32
(
6
), pp.
792
794
.10.1016/j.echo.2019.02.001
44.
Mori
,
S.
,
Izawa
,
Y.
,
Shimoyama
,
S.
, and
Tretter
,
J. T.
,
2019
, “
Three-Dimensional Understanding of Complexity of the Aortic Root Anatomy as the Basis of Routine Two-Dimensional Echocardiographic Measurements
,”
Circ. J.
,
83
(
11
), pp.
2320
2323
.10.1253/circj.CJ-19-0652
45.
Karwat
,
P.
,
Klimonda
,
Z.
,
Styczyński
,
G.
,
Szmigielski
,
C.
, and
Litniewski
,
J.
,
2021
, “
Aortic Root Movement Correlation With the Function of the Left Ventricle
,”
Sci. Rep.
,
11
(
1
), p.
4473
.10.1038/s41598-021-83278-x
46.
Plonek
,
T.
,
Berezowski
,
M.
,
Kurcz
,
J.
,
Podgorski
,
P.
,
Sąsiadek
,
M.
,
Rylski
,
B.
,
Mysiak
,
A.
, and
Jasinski
,
M.
,
2018
, “
The Evaluation of the Aortic Annulus Displacement During Cardiac Cycle Using Magnetic Resonance Imaging
,”
BMC Cardiovasc. Disord.
,
18
(
1
), p.
154
.10.1186/s12872-018-0891-4
You do not currently have access to this content.