Abstract

Hemodynamics associated with the arteries of the circle of Willis (CoW) is analyzed to identify possible cerebral aneurysm initiation locations using computational methods. A numerical fluid–structure interaction model is developed using an idealized geometry with the linear elastic, isotropic arterial wall. Blood flow is assumed to be laminar, incompressible, and modeled using Navier–Stokes equations, non-Newtonian viscosity, and sinusoidal boundary conditions. Available analytical and experimental results are used for the validation of the model. The highest wall shear stress (WSS) and von Mises stress (VMS) are identified for understanding the most vulnerable sites. The WSS distribution in the entire CoW region shows that ACoA junction has the highest value and risk of aneurysm initiation. The flow patterns created due to the geometrical features of the CoW seem to be the significant factor in the distribution of WSS. It is noticed that a decrease in wall elasticity will reduce the magnitude of WSS, both the temporal and spatial averaged value. The wall weakening effects are more pronounced for the posterior communicating artery. The wall weakening creates changes in core velocity and WSS. Changes in Von Mises stress are also noticed due to wall weakening effects. Highly localized VMS is noticed at ACoA and could possess a higher risk for aneurysm initiation and rupture. Despite the simplifications involved in developing the fluid–structure interaction model, this work demonstrates the critical locations at the CoW region regarding aneurysm initiation.

References

1.
Sugiyama
,
S.-I.
,
Meng
,
H.
,
Funamoto
,
K.
,
Inoue
,
T.
,
Fujimura
,
M.
,
Nakayama
,
T.
,
Omodaka
,
S.
,
Shimizu
,
H.
,
Takahashi
,
A.
, and
Tominaga
,
T.
,
2012
, “
Hemodynamic Analysis of Growing Intracranial Aneurysms Arising From a Posterior Inferior Cerebellar Artery
,”
World Neurosurg.
,
78
(
5
), pp.
462
468
.10.1016/j.wneu.2011.09.023
2.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C.
,
2011
, “
Quantitative Characterization of the Hemodynamic Environment in Ruptured and Unruptured Brain Aneurysms
,”
Am. J. Neuroradiol.
,
32
(
1
), pp.
145
151
.10.3174/ajnr.A2419
3.
Nehls
,
D. G.
,
Flom
,
R. A.
,
Carter
,
L. P.
, and
Spetzler
,
R. F.
,
1985
, “
Multiple Intracranial Aneurysms: Determining the Site of Rupture
,”
J. Neurosurgery
,
63
(
3
), pp.
342
348
.10.3171/jns.1985.63.3.0342
4.
Weir
,
B.
,
Disney
,
L.
, and
Karrison
,
T.
,
2002
, “
Sizes of Ruptured and Unruptured Aneurysms in Relation to Their Sites and the Ages of Patients
,”
J. Neurosurg.
,
96
(
1
), pp.
64
70
.10.3171/jns.2002.96.1.0064
5.
Grochowski
,
C.
,
Litak
,
J.
,
Kulesza
,
B.
,
Szmygin
,
P.
,
Ziemianek
,
D.
,
Kamieniak
,
P.
,
Szczepanek
,
D.
,
Rola
,
R.
, and
Trojanowski
,
T.
,
2018
, “
Size and Location Correlations With Higher Rupture Risk of Intracranial Aneurysms
,”
J. Clin. Neurosci.
,
48
, pp.
181
184
.10.1016/j.jocn.2017.10.064
6.
Frösen
,
J.
,
Tulamo
,
R.
,
Paetau
,
A.
,
Laaksamo
,
E.
,
Korja
,
M.
,
Laakso
,
A.
,
Niemelä
,
M.
, and
Hernesniemi
,
J.
,
2012
, “
Saccular Intracranial Aneurysm: Pathology and Mechanisms
,”
Acta Neuropathol.
,
123
(
6
), pp.
773
786
.10.1007/s00401-011-0939-3
7.
Stehbens
,
W. E.
,
1989
, “
Etiology of Intracranial Berry Aneurysms
,”
J. Neurosurg.
,
70
(
6
), pp.
823
831
.10.3171/jns.1989.70.6.0823
8.
Nakagawa
,
F.
,
Kobayashi
,
S.
,
Takemae
,
T.
, and
Sugita
,
K.
,
1986
, “
Aneurysms Protruding From the Dorsal Wall of the Internal Carotid Artery
,”
J. Neurosurg.
,
65
(
3
), pp.
303
308
.10.3171/jns.1986.65.3.0303
9.
Yoganathan
,
A.
,
Ball
,
J.
,
Woo
,
Y.-R.
,
Philpot
,
E.
,
Sung
,
H.-W.
,
Franch
,
R.
, and
Sahn
,
D.
,
1986
, “
Steady Flow Velocity Measurements in a Pulmonary Artery Model With Varying Degrees of Pulmonic Stenosis
,”
J. Biomech.
,
19
(
2
), pp.
129
146
.10.1016/0021-9290(86)90143-0
10.
Cao
,
J.
, and
Rittgers
,
S. E.
,
1998
, “
Particle Motion Within In Vitro Models of Stenosed Internal Carotid and Left Anterior Descending Coronary Arteries
,”
Ann. Biomed. Eng.
,
26
(
2
), pp.
190
199
.10.1114/1.131
11.
Zhao
,
S.
,
Xu
,
X.
,
Hughes
,
A.
,
Thom
,
S.
,
Stanton
,
A.
,
Ariff
,
B.
, and
Long
,
Q.
,
2000
, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
,
33
(
8
), pp.
975
984
.10.1016/S0021-9290(00)00043-9
12.
Shyy
,
J. Y.-J.
,
2001
, “
Mechanotransduction in Endothelial Responses to Shear Stress: Review of Work in Dr. Chien's Laboratory
,”
Biorheology
,
38
(
2–3
), pp.
109
117
.https://content.iospress.com/articles/biorheology/bir099
13.
Cebral
,
J. R.
, and
Raschi
,
M.
,
2013
, “
Suggested Connections Between Risk Factors of Intracranial Aneurysms: A Review
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1366
1383
.10.1007/s10439-012-0723-0
14.
Kyriacou
,
S.
, and
Humphrey
,
J.
,
1996
, “
Influence of Size, Shape and Properties on the Mechanics of Axisymmetric Saccular Aneurysms
,”
J. Biomech.
,
29
(
8
), pp.
1015
1022
.10.1016/0021-9290(96)00010-3
15.
Meng
,
H.
,
Wang
,
Z.
,
Hoi
,
Y.
,
Gao
,
L.
,
Metaxa
,
E.
,
Swartz
,
D. D.
, and
Kolega
,
J.
,
2007
, “
Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation
,”
Stroke
,
38
(
6
), pp.
1924
1931
.10.1161/STROKEAHA.106.481234
16.
Kolega
,
J.
,
Gao
,
L.
,
Mandelbaum
,
M.
,
Mocco
,
J.
,
Siddiqui
,
A. H.
,
Natarajan
,
S. K.
, and
Meng
,
H.
,
2011
, “
Cellular and Molecular Responses of the Basilar Terminus to Hemodynamics During Intracranial Aneurysm Initiation in a Rabbit Model
,”
J. Vascular Res.
,
48
(
5
), pp.
429
442
.10.1159/000324840
17.
Metaxa
,
E.
,
Tremmel
,
M.
,
Natarajan
,
S. K.
,
Xiang
,
J.
,
Paluch
,
R. A.
,
Mandelbaum
,
M.
,
Siddiqui
,
A. H.
,
Kolega
,
J.
,
Mocco
,
J.
, and
Meng
,
H.
,
2010
, “
Characterization of Critical Hemodynamics Contributing to Aneurysmal Remodeling at the Basilar Terminus in a Rabbit Model
,”
Stroke
,
41
(
8
), pp.
1774
1782
.10.1161/STROKEAHA.110.585992
18.
Meng
,
H.
,
Tutino
,
V.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
19.
Tremmel
,
M.
,
Dhar
,
S.
,
Levy
,
E. I.
,
Mocco
,
J.
, and
Meng
,
H.
,
2009
, “
Influence of Intracranial Aneurysm-to-Parent Vessel Size Ratio on Hemodynamics and Implication for Rupture: Results From a Virtual Experimental Study
,”
Neurosurgery
,
64
(
4
), pp.
622
631
.10.1227/01.NEU.0000341529.11231.69
20.
Hassan
,
T.
,
Timofeev
,
E. V.
,
Saito
,
T.
,
Shimizu
,
H.
,
Ezura
,
M.
,
Matsumoto
,
Y.
,
Takayama
,
K.
,
Tominaga
,
T.
, and
Takahashi
,
A.
,
2005
, “
A Proposed Parent Vessel Geometry–Based Categorization of Saccular Intracranial Aneurysms: Computational Flow Dynamics Analysis of the Risk Factors for Lesion Rupture
,”
J. Neurosurg.
,
103
(
4
), pp.
662
680
.10.3171/jns.2005.103.4.0662
21.
Omodaka
,
S.
,
Sugiyama
,
S.-I.
,
Inoue
,
T.
,
Funamoto
,
K.
,
Fujimura
,
M.
,
Shimizu
,
H.
,
Hayase
,
T.
,
Takahashi
,
A.
, and
Tominaga
,
T.
,
2012
, “
Local Hemodynamics at the Rupture Point of Cerebral Aneurysms Determined by Computational Fluid Dynamics Analysis
,”
Cerebrovasc. Dis.
,
34
(
2
), pp.
121
129
.10.1159/000339678
22.
Fukazawa
,
K.
,
Ishida
,
F.
,
Umeda
,
Y.
,
Miura
,
Y.
,
Shimosaka
,
S.
,
Matsushima
,
S.
,
Taki
,
W.
, and
Suzuki
,
H.
,
2015
, “
Using Computational Fluid Dynamics Analysis to Characterize Local Hemodynamic Features of Middle Cerebral Artery Aneurysm Rupture Points
,”
World Neurosurg.
,
83
(
1
), pp.
80
86
.10.1016/j.wneu.2013.02.012
23.
Xu
,
L.
,
Sugawara
,
M.
,
Tanaka
,
G.
,
Ohta
,
M.
,
Liu
,
H.
, and
Yamaguchi
,
R.
,
2016
, “
Effect of Elasticity on Wall Shear Stress Inside Cerebral Aneurysm at Anterior Cerebral Artery
,”
Technol. Health Care
,
24
(
3
), pp.
349
357
.10.3233/THC-161135
24.
Xiang
,
J.
,
Yu
,
J.
,
Snyder
,
K. V.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2016
, “
Hemodynamic–Morphological Discriminant Models for Intracranial Aneurysm Rupture Remain Stable With Increasing Sample Size
,”
J. Neurointervent. Surg.
,
8
(
1
), pp.
104
110
.10.1136/neurintsurg-2014-011477
25.
Zhang
,
Y.
,
Jing
,
L.
,
Liu
,
J.
,
Li
,
C.
,
Fan
,
J.
,
Wang
,
S.
,
Li
,
H.
, and
Yang
,
X.
,
2016
, “
Clinical, Morphological, and Hemodynamic Independent Characteristic Factors for Rupture of Posterior Communicating Artery Aneurysms
,”
J. Neurointervent. Surg.
,
8
(
8
), pp.
808
812
.10.1136/neurintsurg-2015-011865
26.
Jiang
,
P.
,
Liu
,
Q.
,
Wu
,
J.
,
Chen
,
X.
,
Li
,
M.
,
Li
,
Z.
,
Yang
,
S.
,
Guo
,
R.
,
Gao
,
B.
,
Cao
,
Y.
,
Wang
,
R.
, and
Wang
,
S.
,
2019
, “
Hemodynamic Characteristics Associated With Thinner Regions of Intracranial Aneurysm Wall
,”
J. Clin. Neurosci.
,
67
, pp.
185
190
.10.1016/j.jocn.2019.06.024
27.
Saqr
,
K. M.
,
Rashad
,
S.
,
Tupin
,
S.
,
Niizuma
,
K.
,
Hassan
,
T.
,
Tominaga
,
T.
, and
Ohta
,
M.
,
2020
, “
What Does Computational Fluid Dynamics Tell us About Intracranial Aneurysms? A Meta-Analysis and Critical Review
,”
J. Cerebral Blood Flow Metabol.
,
40
(
5
), pp.
1021
1039
.10.1177/0271678X19854640
28.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Soto
,
O.
,
Löhner
,
R.
, and
Alperin
,
N.
,
2003
, “
Blood-Flow Models of the Circle of Willis From Magnetic Resonance Data
,”
J. Eng. Math.
,
47
(
3/4
), pp.
369
386
.10.1023/B:ENGI.0000007977.02652.02
29.
Moore
,
S.
,
David
,
T.
,
Chase
,
J.
,
Arnold
,
J.
, and
Fink
,
J.
,
2006
, “
3D Models of Blood Flow in the Cerebral Vasculature
,”
J. Biomech.
,
39
(
8
), pp.
1454
1463
.10.1016/j.jbiomech.2005.04.005
30.
Alnæs
,
M. S.
,
Isaksen
,
J.
,
Mardal
,
K.-A.
,
Romner
,
B.
,
Morgan
,
M. K.
, and
Ingebrigtsen
,
T.
,
2007
, “
Computation of Hemodynamics in the Circle of Willis
,”
Stroke
,
38
(
9
), pp.
2500
2505
.10.1161/STROKEAHA.107.482471
31.
Liu
,
X.
,
Gao
,
Z.
,
Xiong
,
H.
,
Ghista
,
D.
,
Ren
,
L.
,
Zhang
,
H.
,
Wu
,
W.
,
Huang
,
W.
, and
Hau
,
W. K.
,
2016
, “
Three-Dimensional Hemodynamics Analysis of the Circle of Willis in the Patient-Specific Nonintegral Arterial Structures
,”
Biomech. Model. Mechanobiol.
,
15
(
6
), pp.
1439
1456
.10.1007/s10237-016-0773-6
32.
Jahed
,
M.
,
Ghalichi
,
F.
, and
Farhoudi
,
M.
,
2018
, “
Fluid-Structure Interaction of Patient-Specific Circle of Willis With Aneurysm: Investigation of Hemodynamic Parameters
,”
Bio-Med. Mater. Eng.
,
29
(
3
), pp.
357
368
.10.3233/BME-181732
33.
Gaidzik
,
F.
,
Pathiraja
,
S.
,
Saalfeld
,
S.
,
Stucht
,
D.
,
Speck
,
O.
,
Thévenin
,
D.
, and
Janiga
,
G.
,
2021
, “
Hemodynamic Data Assimilation in a Subject-Specific Circle of Willis Geometry
,”
Clin. Neuroradiol.
,
31
(
3
), pp.
643
649
.10.1007/s00062-020-00959-2
34.
Bergel
,
D. H.
,
1960
, “
The Visco-Elastic Properties of the Arterial Wall
,” Ph.D. thesis,
University of London
, London, UK.
35.
Anastasiou
,
A. D.
,
Spyrogianni
,
A. S.
,
Koskinas
,
K. C.
,
Giannoglou
,
G. D.
, and
Paras
,
S. V.
,
2012
, “
Experimental Investigation of the Flow of a Blood Analogue Fluid in a Replica of a Bifurcated Small Artery
,”
Med. Eng. Phys.
,
34
(
2
), pp.
211
218
.10.1016/j.medengphy.2011.07.012
36.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel—Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.10.3233/BIR-1991-283-415
37.
Sandeep
,
S.
, and
Shine
,
S.
,
2021
, “
Effect of Stenosis and Dilatation on the Hemodynamic Parameters Associated With Left Coronary Artery
,”
Comput. Methods Prog. Biomed.
,
204
, p.
106052
.10.1016/j.cmpb.2021.106052
38.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.10.1016/j.jbiomech.2003.09.016
39.
Frolov
,
S.
,
Sindeev
,
S.
,
Liepsch
,
D.
,
Balasso
,
A.
,
Arnold
,
P.
,
Kirschke
,
J.
,
Prothmann
,
S.
, and
Potlov
,
A. Y.
,
2018
, “
Newtonian and Non-Newtonian Blood Flow at 90-Degree Bifurcation of the Cerebral Artery: A Comparative Study of Fluid Viscosity Models
,”
J. Mech. Med. Biol.
,
18
(
05
), p.
1850043
.10.1142/S0219519418500434
40.
Nixon
,
A. M.
,
Gunel
,
M.
, and
Sumpio
,
B. E.
,
2010
, “
The Critical Role of Hemodynamics in the Development of Cerebral Vascular Disease: A Review
,”
J. Neurosurg.
,
112
(
6
), pp.
1240
1253
.10.3171/2009.10.JNS09759
41.
Ballermann
,
B. J.
,
Dardik
,
A.
,
Eng
,
E.
, and
Liu
,
A.
,
1998
, “
Shear Stress and the Endothelium
,”
Kidney Int.
,
54
, pp.
S100
S108
.10.1046/j.1523-1755.1998.06720.x
42.
Du
,
W.
,
Mills
,
I.
, and
Sumpio
,
B. E.
,
1995
, “
Cyclic Strain Causes Heterogeneous Induction of Transcription Factors, AP-1, CRE Binding Protein and NF-KB, in Endothelial Cells: Species and Vascular Bed Diversity
,”
J. Biomech.
,
28
(
12
), pp.
1485
1491
.10.1016/0021-9290(95)00096-8
43.
Cebral
,
J. R.
,
Vazquez
,
M.
,
Sforza
,
D. M.
,
Houzeaux
,
G.
,
Tateshima
,
S.
,
Scrivano
,
E.
,
Bleise
,
C.
,
Lylyk
,
P.
, and
Putman
,
C. M.
,
2015
, “
Analysis of Hemodynamics and Wall Mechanics at Sites of Cerebral Aneurysm Rupture
,”
J. NeuroIntervent. Surg.
,
7
(
7
), pp.
530
536
.10.1136/neurintsurg-2014-011247
44.
Kayembe
,
K.
,
Sasahara
,
M.
, and
Hazama
,
F.
,
1984
, “
Cerebral Aneurysms and Variations in the Circle of Willis
,”
Stroke
,
15
(
5
), pp.
846
850
.10.1161/01.STR.15.5.846
45.
Kwak
,
R.
,
Niizuma
,
H.
, and
Suzuki
,
J.
,
1980
, “
Hemodynamics in the Anterior Part of the Circle of Willis in Patients With Intracranial Aneurysms: A Study by Cerebral Angiography
,”
Tohoku J. Exp. Med.
,
132
(
1
), pp.
69
73
.10.1620/tjem.132.69
46.
Sadasivan
,
C.
,
Fiorella
,
D. J.
,
Woo
,
H. H.
, and
Lieber
,
B. B.
,
2013
, “
Physical Factors Effecting Cerebral Aneurysm Pathophysiology
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1347
1365
.10.1007/s10439-013-0800-z
47.
Glor
,
F.
,
Ariff
,
B.
,
Hughes
,
A.
,
Crowe
,
L.
,
Verdonck
,
P.
,
Barratt
,
D.
,
Thom
,
S. M.
,
Firmin
,
D.
, and
Xu
,
X.
,
2004
, “
Image-Based Carotid Flow Reconstruction: A Comparison Between Mri and Ultrasound
,”
Physiol. Measure.
,
25
(
6
), pp.
1495
1509
.10.1088/0967-3334/25/6/014
48.
Soulis
,
J. V.
,
Lampri
,
O. P.
,
Fytanidis
,
D. K.
, and
Giannoglou
,
G. D.
,
2011
, “
Relative Residence Time and Oscillatory Shear Index of Non-Newtonian Flow Models in Aorta
,”
10th International Workshop on Biomedical Engineering
,
IEEE
, Kos, Greece, Oct. 5–7, pp.
1
4
.10.1109/IWBE.2011.6079011
49.
Greenfield
,
J. C.
, Jr.
, and
Patel
,
D. J.
,
1962
, “
Relation Between Pressure and Diameter in the Ascending Aorta of Man
,”
Circ. Res.
,
10
(
5
), pp.
778
781
.10.1161/01.RES.10.5.778
50.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
51.
Finlay
,
H. M.
,
Whittaker
,
P.
, and
Canham
,
P. B.
,
1998
, “
Collagen Organization in the Branching Region of Human Brain Arteries
,”
Stroke
,
29
(
8
), pp.
1595
1601
.10.1161/01.STR.29.8.1595
52.
Shamloo
,
A.
,
Nejad
,
M. A.
, and
Saeedi
,
M.
,
2017
, “
Fluid–Structure Interaction Simulation of a Cerebral Aneurysm: Effects of Endovascular Coiling Treatment and Aneurysm Wall Thickening
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
72
83
.10.1016/j.jmbbm.2017.05.020
53.
Kapoor
,
K.
,
Singh
,
B.
, and
Dewan
,
I. J.
,
2008
, “
Variations in the Configuration of the Circle of Willis
,”
Anatom. Sci. Int.
,
83
(
2
), pp.
96
106
.10.1111/j.1447-073X.2007.00216.x
You do not currently have access to this content.