Abstract

The most common human locomotion problems such as quadriceps weakness, knee osteoarthritis can be healed up by using exoskeleton mechanisms with proper control systems. However, these kinds of abnormalities cannot be easily modeled in terms of engineering perspectives due to a lack of adequate data or unknown dynamics. Also, nature always seeks minimum energy as well as biology, which means that the unknown dynamics can be built by using this phenomenon. In this study, a new system dynamic model had been involved in designing a simple single-legged exoskeleton robot mechanism and its control system to assist partially disabled individuals to improve their quality of locomotion. To determine the specific features of the human gait disorders to interpret their nature in the computer-aided simulation environment, knee osteoarthritis, and quadriceps weakness, which are the common types of such problems, have been chosen as the main interests for this study. By using the lower limb model with anthropometric data, the simulations of disorders have been realized on matlabsimscape environment, which enables us to model the entire exoskeleton system with the three-dimensional parts of the human body. A model of a leg with the disorder was able to be obtained with the utilization of feedback linearization, which is one of the examples of minimum principles in the control theory. A proper gait cycle is achieved with the exoskeleton application and separately for the leg, with approximately 10 deg deviation from the natural property in knee flexion. Finally, it can be seen that the system conversion into such problematic cases with or without an exoskeleton system is accomplished.

References

1.
Montano
,
D.
,
2014
, “
Upper Body and Lower Limbs Musculoskeletal Symptoms and Health Inequalities in Europe: An Analysis of Cross-Sectional Data
,”
BMC Musculoskelet. Disord.
,
15
(
1
), p.
285
.10.1186/1471-2474-15-285
2.
HSE
,
2017
, “Work-Related Musculoskeletal Disorders (WRMSDs) Statistics in Great Britain 2017,” HSE, London, UK, accessed Nov. 2017, https://www.hse.gov.uk/statistics/causdis/msd.pdf
3.
Chen
,
B.
,
Ma
,
H.
,
Qin
,
L.-Y.
,
Gao
,
F.
,
Chan
,
K.-M.
,
Law
,
S.-W.
,
Qin
,
L.
, and
Liao
,
W.-H.
,
2016
, “
Recent Developments and Challenges of Lower Extremity Exoskeletons
,”
J. Orthop. Transl.
,
5
, pp.
26
37
.10.1016/j.jot.2015.09.007
4.
Goodpaster
,
B. H.
,
Park
,
S. W.
,
Harris
,
T. B.
,
Kritchevsky
,
S. B.
,
Nevitt
,
M.
,
Schwartz
,
A. V.
,
Simonsick
,
E. M.
,
Tylavsky
,
F. A.
,
Visser
,
M.
, and
Newman
,
A. B.
,
for the Health ABC Study
,
2006
, “
The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study
,”
J. Gerontol. Ser. A Biol. Sci. Med. Sci.
,
61
(
10
), pp.
1059
1064
.10.1093/gerona/61.10.1059
5.
WHO
,
2013
, “
Spinal Cord Injury
,” WHO, Geneva, Switzerland, accessed Jan. 21, 2022, http://www.who.int/en/news-room/fact-sheets/detail/spinal-cord-injury
6.
McDonald
,
J. W.
, and
Becker
,
D.
,
2003
, “
Spinal Cord Injury: Promising Interventions and Realistic Goals
,”
Am. J. Phys. Med. Rehabil.
,
82
, pp.
S38
S49
.10.1097/01.PHM.0000086994.53716.17
7.
Laschowski
,
B.
,
McPhee
,
J.
, and
Andrysek
,
J.
,
2019
, “
Lower-Limb Prostheses and Exoskeletons With Energy Regeneration: Mechatronic Design and Optimization Review
,”
ASME. J. Mech. Rob.
,
11
(
4
), p.
040801
.10.1115/1.4043460
8.
Mehrholz
,
J.
,
Thomas
,
S.
,
Werner
,
C.
,
Kugler
,
J.
,
Pohl
,
M.
, and
Elsner
,
B.
,
2017
, “
Electromechanical-Assisted Training for Walking After Stroke: A Major Update of the Evidence
,”
Stroke
,
48
(
8
), pp.
e188
e189
.10.1161/STROKEAHA.117.018018
9.
Siqueira
,
A. A. G.
,
Jardim
,
B.
,
Vilela
,
P. R. C.
, and
Winter
,
T. F.
,
2008
, “
Analysis of Gait-Pattern Adaptation Algorithms Applied in an Exoskeleton for Lower Limbs
,”
16th Mediterranean Conference on Control and Automation
, Ajaccio, France, June 25–27, pp.
920
925
.10.1109/MED.2008.4602081
10.
Di Natali
,
C.
,
Sadeghi
,
A.
,
Mondini
,
A.
,
Bottenberg
,
E.
,
Hartigan
,
B.
,
De Eyto
,
A.
,
O'Sullivan
,
L.
,
Rocon
,
E.
,
Stadler
,
K.
,
Mazzolai
,
B.
,
Caldwell
,
D. G.
, and
Ortiz
,
J.
,
2020
, “
Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton
,”
Front. Neurorob.
,
14
, p.
31
.10.3389/fnbot.2020.00031
11.
Molteni
,
F.
,
Gasperini
,
G.
,
Cannaviello
,
G.
, and
Guanziroli
,
E.
,
2018
, “
Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review
,”
PMR
,
10
, pp.
S174
S188
.10.1016/j.pmrj.2018.06.005
12.
Yu
,
W.
, and
Rosen
,
J.
,
2010
, “
A Novel Linear PID Controller for an Upper Limb Exoskeleton
,”
49th IEEE Conference on Decision and Control (CDC)
, Atlanta, GA, Dec. 15–17, pp.
3548
3553
.10.1109/CDC.2010.5716985
13.
Vukobratović
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
Int. J. Humanoid Rob.
,
1
(
1
), pp.
157
173
.10.1142/S0219843604000083
14.
Dallali
,
H.
,
2012
,
Modelling and Dynamic Stabilisation of a Compliant Humanoid Robot, CoMan
,
The University of Manchester
,
UK
.
15.
Yeşildirek
,
A.
, and
Lewis
,
F. L.
,
1995
, “
Feedback Linearization Using Neural Networks
,”
Automatica
,
31
(
11
), pp.
1659
1664
.10.1016/0005-1098(95)00078-B
16.
Agboola-Dobson
,
A.
,
Wei
,
G.
, and
Ren
,
L.
,
2019
, “
Biologically Inspired Design and Development of a Variable Stiffness Powered Ankle-Foot Prosthesis
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041012
.10.1115/1.4043603
17.
Liu
,
J.
,
Xiong
,
C.
, and
Fu
,
C.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
.10.1115/1.4043456
18.
Marion
,
J. B.
,
2013
,
Classical Dynamics of Particles and Systems
,
Academic Press, The University of Michigan
, Belmont, CA.
19.
Lewis
,
F. L.
,
Dawson
,
D. M.
, and
Abdallah
,
C. T.
,
2003
,
Robot Manipulator Control: Theory and Practice
,
CRC Press, New York
.
20.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
, 4th ed.,
Wiley
, New York.
21.
MathWorks, 2022, “Simscape Model and Simulate Multidomain Physical Systems,” MathWorks, Natick, MA, accessed Jan. 21,
2022
, https://www.mathworks.com/products/simscape.html
22.
Gordon
,
C. C.
,
Churchill
,
T.
,
Clauser
,
C. E.
,
Bradtmiller
,
B.
,
McConville
,
J. T.
,
Tebbetts
,
I.
, and
Walker
,
R. A.
,
1989
,
1988 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics
,
Anthropology Research Project
,
Yellow Springs, OH
.
23.
Davis
,
M. A.
,
Ettinger
,
W. H.
,
Neuhaus
,
J. M.
,
Cho
,
S. A.
, and
Hauck
,
W. W.
,
1989
, “
The Association of Knee Injury and Obesity With Unilateral and Bilateral Osteoarthritis of the Knee
,”
Am. J. Epidemiol.
,
130
(
2
), pp.
278
288
.10.1093/oxfordjournals.aje.a115334
24.
Favre
,
J.
, and
Jolles
,
B. M.
,
2016
, “
Gait Analysis of Patients With Knee Osteoarthritis Highlights a Pathological Mechanical Pathway and Provides a Basis for Therapeutic Interventions
,”
EFORT Open Rev.
,
1
(
10
), pp.
368
374
.10.1302/2058-5241.1.000051
25.
Deluzio
,
K. J.
, and
Astephen
,
J. L.
,
2007
, “
Biomechanical Features of Gait Waveform Data Associated With Knee Osteoarthritis: An Application of Principal Component Analysis
,”
Gait Posture
,
25
(
1
), pp.
86
93
.10.1016/j.gaitpost.2006.01.007
26.
Slemenda
,
C.
,
Brandt
,
K. D.
,
Heilman
,
D. K.
,
Mazzuca
,
S.
,
Braunstein
,
E. M.
,
Katz
,
B. P.
, and
Wolinsky
,
F. D.
,
1997
, “
Quadriceps Weakness and Osteoarthritis of the Knee
,”
Ann. Intern. Med.
,
127
(
2
), pp.
97
104
.10.7326/0003-4819-127-2-199707150-00001
27.
Mizner
,
R. L.
, and
Snyder‐Mackler
,
L.
,
2005
, “
Altered Loading During Walking and Sit‐To‐Stand is Affected by Quadriceps Weakness After Total Knee Arthroplasty
,”
J. Orthop. Res.
,
23
(
5
), pp.
1083
1090
.10.1016/j.orthres.2005.01.021
28.
Bovi
,
G.
,
Rabuffetti
,
M.
,
Mazzoleni
,
P.
, and
Ferrarin
,
M.
,
2011
, “
A Multiple-Task Gait Analysis Approach: Kinematic, Kinetic and EMG Reference Data for Healthy Young and Adult Subjects
,”
Gait Posture
,
33
(
1
), pp.
6
13
.10.1016/j.gaitpost.2010.08.009
29.
Iscan
,
M.
,
Vural
,
B.
,
Eken
,
H.
, and
Yilmaz
,
C.
,
2018
, “
Design and Control of an Exoskeleton Robot: A MATLAB Simscape Application
,”
J. Therm. Eng.
,
4
(
2, Special Issue 7
), pp.
1867
1878
.https://www.researchgate.net/publication/329896265_DESIGN_AND_CONTROL_OF_AN_EXOSKELETON_ROBOT_A_MATLAB_SIMSCAPE_APPLICATION
30.
Winter
,
D. A.
,
1991
, “
Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,” University of Waterloo Press, Waterloo, ON, Canada.https://trid.trb.org/view/770965
You do not currently have access to this content.