Abstract

QT surveillance is the most vital appliance to detect the possibility of sudden death sourced by using pro-arrhythmic drugs treating abnormal conditions in the heart. The repolarization of ventricles makes QT interval surveillance difficult since noisy conditions and individual cardiac situations. Besides, an automated QT algorithm is crucial due to a manual QT measurement with some disadvantages such as fatigue condition in reading long records. In this study, a fully novel automated method combining Continuous Wavelet Transform and Philips method was established to perform QT interval analysis. Electrocardiogram recordings were obtained from PhyisoNet database marked by manual and standard automated methods. The proposed algorithm had scores of 15.46 and 11.87 millisecond mean error with 11.85 and 9.91 millisecond standard deviation in terms of gold and silver standards, respectively. Also, the entire QT database was utilized in order to test the algorithm performance with the score of 12.89 and 9.76 millisecond mean and standard deviation errors, respectively. The present algorithm performance had scores of −0.21 ± 7.81 at golden standard, and −4.10 ± 18.21 millisecond error for the whole QT database tests, respectively. The proposed algorithm is attained to more stable and robust results with a higher performance than the previous comparable studies.

References

1.
Goldberg
,
R.
,
Bengtson
,
J.
,
Chen
,
Z.
,
Anderson
,
K.
,
Locati
,
E.
, and
Levy
,
D.
,
1991
, “
Duration of the QT Interval and Total and Cardiovascular Mortality in Healthy Persons (the Framingham Heart Study Experience)
,”
Am. J. Cardiol.
,
67
(
1
), pp.
55
58
.10.1016/0002-9149(91)90099-7
2.
Xue
,
Q.
, and
Reddy
,
S.
,
1998
, “
Algorithms for Computerized QT Analysis
,”
J. Electrocardiol.
,
30
, pp.
181
186
.10.1016/S0022-0736(98)80072-1
3.
Maron
,
B. J.
, and
Roberts
,
W. C.
,
1979
, “
Quantitative Analysis of Cardiac Muscle Cell Disorganization in the Ventricular Septum of Patients With Hypertrophic Cardiomyopathy
,”
Circulation
,
59
(
4
), pp.
689
706
.10.1161/01.CIR.59.4.689
4.
Zhang
,
Q.
,
Manriquez
,
A. I.
,
Médigue
,
C.
,
Papelier
,
Y.
, and
Sorine
,
M.
,
2006
, “
An Algorithm for Robust and Efficient Location of T-Wave Ends in Electrocardiograms
,”
IEEE Trans. Biomed. Eng.
,
53
(
12
), pp.
2544
2552
.10.1109/TBME.2006.884644
5.
McLaughlin
,
N. B.
,
Campbell
,
R. W.
, and
Murray
,
A.
,
1996
, “
Accuracy of Four Automatic QT Measurement Techniques in Cardiac Patients and Healthy Subjects
,”
Heart
,
76
(
5
), pp.
422
426
.10.1136/hrt.76.5.422
6.
Laguna
,
P.
,
Thakor
,
N. V.
,
Caminal
,
P.
,
Jané
,
R.
,
Yoon
,
H.-R.
,
Bayés de Luna
,
A.
,
Marti
,
V.
, and
Guindo
,
J.
,
1990
, “
New Algorithm for QT Interval Analysis in 24-Hour Holter ECG: Performance and Applications
,”
Med. Biol. Eng. Comput.
,
28
(
1
), pp.
67
73
.10.1007/BF02441680
7.
Clifford
,
G. D.
, and
Villarroel
,
M. C.
,
2006
, “
Model-Based Determination of QT Intervals
,”
Computers in Cardiology
,
IEEE
, Valencia, Spain, Sept. 17–20, pp.
357
360
.https://ieeexplore.ieee.org/document/4511862
8.
Hayn
,
D.
,
Kollmann
,
A.
, and
Schreier
,
G.
,
2006
, “
Automated QT Interval Measurement From Multilead ECG Signals
,”
Computers in Cardiology
,
IEEE
, Valencia, Spain, Sept. 17–20, pp.
381
384
.https://ieeexplore.ieee.org/document/4511868
9.
Iscan
,
M.
,
Yilmaz
,
C.
, and
Yi̇Git
,
F.
,
2016
, “
Arrhythmic and Non-Arrhythmic Heartbeat Classification Based on Gaussian Mixture Model
,” Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (
EBBT
),
IEEE
, Istanbul, Turkey, Apr. 26–27, pp.
1
4
.10.1109/EBBT.2016.7483686
10.
Iscan
,
M.
,
Yi̇Git
,
F.
, and
Yilmaz
,
C.
,
2016
, “
T-Wave End Pattern Classification Based on Gaussian Mixture Model
,” 24th Signal Processing and Communication Application Conference (
SIU
),
IEEE
, Zonguldak, Turkey, May 16–19, pp.
1953
1956
.10.1109/SIU.2016.7496149
11.
Leon
,
A. A.
,
Suarez
,
D. M.
,
Molina
,
C. R. V.
,
Seisdedos
,
G.
,
Goovaerts
,
S.
,
Vandeput
,
S.
, and
Van Huffel
,
2015
, “
Neural Network Approach for T-Wave End Detection: A Comparison of Architectures
,” Computing in Cardiology Conference (
CinC
),
IEEE
, Nice, France, Sept. 6–9, pp.
589
592
.10.1109/CIC.2015.7410979
12.
Li
,
C.
,
Zheng
,
C.
, and
Tai
,
C.
,
1995
, “
Detection of ECG Characteristic Points Using Wavelet Transforms
,”
IEEE Trans. Biomed. Eng.
,
42
(
1
), pp.
21
28
.10.1109/10.362922
13.
Chesnokov, Yuriy
,
C.
,
Nerukh
,
D.
, and
Glen
,
R. C.
,
2006
, “
Individually Adaptable Automatic QT Detector
,”
Computers in Cardiology
,
IEEE
, Valencia, Spain, Sept. 17–20, pp.
337
340
.https://ieeexplore.ieee.org/document/4511857
14.
Gregg
,
R. E.
,
Babaeizadeh
,
S.
,
Feild
,
D. Q.
,
Helfenbein
,
E. D.
,
Lindauer
,
J. M.
, and
Zhou
,
S. H.
,
2007
, “
Comparison of Two Automated Methods for QT Interval Measurement
,”
Computers in Cardiology
,
IEEE
, Durham, NC, Sept. 30–Oct. 3, pp.
427
430
.10.1109/CIC.2007.4745513
15.
Lindauer
,
J.
,
Gregg
,
R.
,
Helfenbein
,
E.
,
Shao
,
M.
, and
Zhou
,
S.
,
2005
, “
Global QT Measurements in the Philips 12-Lead Algorithm
,”
J. Electrocardiol.
,
38
(
4
), p.
90
.10.1016/j.jelectrocard.2005.06.062
16.
Zhou
,
S. H.
,
Helfenbein
,
E. D.
,
Lindauer
,
J. M.
,
Gregg
,
R. E.
, and
Feild
,
D. Q.
,
2009
, “
Philips QT Interval Measurement Algorithms for Diagnostic, Ambulatory, and Patient Monitoring ECG Applications
,”
Ann. Noninvasive Electrocardiol.
,
14
(Suppl. 1), pp.
S3
S8
.10.1111/j.1542-474X.2008.00258.x
17.
Helfenbein
,
E. D.
,
Ackerman
,
M. J.
,
Rautaharju
,
P. M.
,
Zhou
,
S. H.
,
Gregg
,
R. E.
,
Lindauer
,
J. M.
,
Miller
,
D.
,
Wang
,
J. J.
,
Kresge
,
S. S.
,
Babaeizadeh
,
S.
,
Feild
,
D. Q.
, and
Michaud
,
F. P.
,
2007
, “
An Algorithm for QT Interval Monitoring in Neonatal Intensive Care Units
,”
J. Electrocardiol.
,
40
(
6
), pp.
S103
S110
.10.1016/j.jelectrocard.2007.06.019
18.
Helfenbein
,
E. D.
,
Zhou
,
S. H.
,
Feild
,
D. Q.
,
Lindauer
,
J. M.
,
Gregg
,
R. E.
,
Wang
,
J. Y.
,
Kresge
,
S. S.
, and
Michaud
,
F. P.
,
2006
, “
Performance of a Continuous Real-Time QT Interval Monitoring Algorithm for the Critical-Care Setting
,”
Computers in Cardiology
,
IEEE
, Valencia, Spain, Sept. 17–20, pp.
697
700
.https://ieeexplore.ieee.org/document/4511947
19.
Iscan
,
M.
,
Yilmaz
,
A.
, and
Yilmaz
,
C.
,
2016
, “
A Novel Algorithm Combining Continuous Wavelet Transform and Philips Method for QT Interval Analysis
,” National Conference on Electrical, Electronics and Biomedical Engineering (
ELECO
),
IEEE
, Bursa, Turkey, Dec. 1–3, pp.
507
511
(Print on Demand(PoD)).https://ieeexplore.ieee.org/document/7851876
20.
Willems
,
J. L.
,
Arnaud
,
P.
,
van Bemmel
,
J. H.
,
Bourdillon
,
P. J.
,
Brohet
,
C.
,
Dalla Volta
,
S.
,
Andersen
,
J. D.
,
Degani
,
R.
,
Denis
,
B.
, and
Demeester
,
M.
,
1985
, “
Assessment of the Performance of Electrocardiographic Computer Programs With the Use of a Reference Data Base
,”
Circulation
,
71
(
3
), pp.
523
534
.10.1161/01.CIR.71.3.523
21.
Sharma
,
L. D.
, and
Sunkaria
,
R. K.
,
2016
, “
A Robust QRS Detection Using Novel Pre-Processing Techniques and Kurtosis Based Enhanced Efficiency
,”
Measurement
,
87
, pp.
194
204
.10.1016/j.measurement.2016.03.015
22.
Chudacek
,
V.
,
Huptych
,
M.
,
Novak
,
D.
, and
Lhotska
,
L.
,
2006
, “
Automatic QT Interval Measurement Using Rule-Based Gradient Method
,”
Computers in Cardiology
,
IEEE
, Valencia, Spain, Sept. 17–20, pp.
349
351
.https://ieeexplore.ieee.org/document/4511860
23.
Vázquez-Seisdedos
,
C. R.
,
Neto
,
J. E.
,
Reyes
,
E. J. M.
,
Klautau
,
A.
, and
de Oliveira
,
R. C. L.
,
2011
, “
New Approach for T-Wave End Detection on Electrocardiogram: Performance in Noisy Conditions
,”
Biomed. Eng. Online
,
10
(
1
), pp.
1
11
.10.1186/1475-925X-10-77
24.
Laguna
,
P.
,
Jané
,
R.
, and
Caminal
,
P.
,
1994
, “
Automatic Detection of Wave Boundaries in Multilead ECG Signals: Validation With the CSE Database
,”
Comput. Biomed. Res.
,
27
(
1
), pp.
45
60
.10.1006/cbmr.1994.1006
25.
Madeiro
,
J. P.
,
Nicolson
,
W. B.
,
Cortez
,
P. C.
,
Marques
,
J. A.
,
Vázquez-Seisdedos
,
C. R.
,
Elangovan
,
N.
,
Ng
,
G. A.
, and
Schlindwein
,
F. S.
,
2013
, “
New Approach for T-Wave Peak Detection and T-Wave End Location in 12-Lead Paced ECG Signals Based on a Mathematical Model
,”
Med. Eng. Phys.
,
35
(
8
), pp.
1105
1115
.10.1016/j.medengphy.2012.11.007
26.
Martínez
,
A.
,
Alcaraz
,
R.
, and
Rieta
,
J. J.
,
2010
, “
A New Method for Automatic Delineation of ECG Fiducial Points Based on the Phasor Transform
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology
,
IEEE
, Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
4586
4589
.10.1109/IEMBS.2010.5626498
27.
Helfenbein
,
E. D.
,
Zhou
,
S. H.
,
Lindauer
,
J. M.
,
Field
,
D. Q.
,
Gregg
,
R. E.
,
Wang
,
J. J.
,
Kresge
,
S. S.
, and
Michaud
,
F. P.
,
2006
, “
An Algorithm for Continuous Real-Time QT Interval Monitoring
,”
J. Electrocardiol.
,
39
(
4
), pp.
S123
S127
.10.1016/j.jelectrocard.2006.05.018
28.
Jane
,
R.
,
Blasi
,
A.
,
García
,
J.
, and
Laguna
,
P.
,
1997
, “
Evaluation of an Automatic Threshold Based Detector of Waveform Limits in Holter ECG With the QT Database
,”
Computers in Cardiology
,
IEEE
, Lund, Sweden, Sept. 7–10, pp.
295
298
.10.1109/CIC.1997.647889
You do not currently have access to this content.