Abstract

Brain computer interface (BCI) systems are developed in the biomedical engineering fields to increase the quality of life among patients with paralysis and neurological conditions. The development of a six class BCI controller to operate a semi-autonomous mobile robotic arm is presented. The controller uses the following mental tasks: imagined left/right hand squeeze, imagined left/right foot tap, rest, and a physical jaw clench. To design a controller, the locations of active electrodes are verified, and an appropriate machine learning algorithm is determined. Three subjects, ages ranging between 22 and 27, participated in five sessions of motor imagery experiments to record their brainwaves. These recordings were analyzed using event related potential (ERP) plots and topographical maps to determine active electrodes. bcilab was used to train two, three, five, and six class BCI controllers using linear discriminant analysis (LDA) and relevance vector machine (RVM) machine learning methods. The subjects' data were used to compare the two-method's performance in terms of error rate percentage. While a two class BCI controller showed the same accuracy for both methods, the three and five class BCI controllers showed the RVM approach having a higher accuracy than the LDA approach. For the five-class controller, error rate percentage was 33.3% for LDA and 29.2% for RVM. The six class BCI controller error rate percentage for both LDA and RVM was 34.5%. While the percentage values are the same, RVM was chosen as the desired machine learning algorithm based on the trend seen in the three and five class controller performances.

References

1.
Shin
,
J.
, and
Im
,
C.-H.
,
2020
, `“
Performance Improvement of Near-Infrared Spectroscopy-Based Brain-Computer Interface Using Regularized Linear Discriminant Analysis Ensemble Classifier Based on Boostrap Aggregating
,”
Front. Neurosci.
,
14
(
168
), pp.
1
11
.10.3389/fnins.2020.00168
2.
Vidaurre
,
C.
, and
Blankertz
,
B.
,
2010
, “
Towards a Cure for BCI Illiteracy
,”
Brain Topogr.
,
23
(
2
), pp.
194
198
.10.1007/s10548-009-0121-6
3.
Combrisson
,
E.
, and
Jerbi
,
K.
,
2015
, “
Exceeding Chance Level by Chance: The Caveat of Theoretical Chance Levels in Brain Signal Classification and Statistical Assessment of Decoding Accuracy
,”
J. Neurosci. Methods
,
250
, pp.
126
136
.10.1016/j.jneumeth.2015.01.010
4.
Matsumoto
,
M.
, and
Hori
,
J.
,
2014
, “
Classification of Silent Speech Using Support Vector Machine and Relevance Vector Machine
,”
Appl. Soft Comput.
,
20
, pp.
95
102
.10.1016/j.asoc.2013.10.023
5.
Gupta
,
R.
,
Laghari
,
K. R.
, and
Falk
,
T. H.
,
2016
, “
Relevance Vector Classifier Decision Fusion and EEG Graph-Theoretic Features for Automatic Affective State Characterization
,”
Neurocomputing
,
174
, pp.
875
884
.10.1016/j.neucom.2015.09.085
6.
Dong
,
E.
,
Zhu
,
G.
,
Chen
,
C.
,
Tong
,
J.
,
Jiao
,
Y.
, and
Du
,
S.
,
2018
, “
Introducing Chaos Behavior to Kernel Relevance Vector Machine (RVM) for Four-Class EEG Classification
,”
PLos One
,
13
(
6
), p.
e0198786
.10.1371/journal.pone.0198786
7.
BrainVisor, 2020,
2020
, “
Brain Structure and Function
,” BrainVisor, accessed Nov. 10, 2021, http://brainvisor.com/structure-function%20(1).html
8.
Bugayong
,
K.
,
2020
, “
Brain Lobes,' Huntington's Outreach Project for Education
,” At Stanford, Mar. 17, 2017, accessed Nov. 10, 2021, https://hopes.stanford.edu/the-hopes-brain-tutorial-text-version/brain-lobes/
9.
Freudenrich
,
C.
, and
Boyd
,
R.
,
2020
, “
How Your Brain Works
,” HowStuffWorks, Marina Del Rey, CA, June 6, 2001, accessed Nov. 10, 2021, https://science.howstuffworks.com/life/inside-the-mind/human-brain/brain.htm
10.
Pappas
,
S.
,
2010
, “
Why is Gray Matter Gray?
” Live Science, May 24, 2010, accessed Oct. 7, 2020, https://www.livescience.com/32605-why-is-gray-matter-gray.html
11.
Muse
,
2020
, “
A Deep Dive Into Brainwaves: Brainwave Frequencies Explained
,” Muse, Toronto, ON, Canada, accessed Nov. 10, 2021, https://choosemuse.com/blog/a-deep-dive-into-brainwaves-brainwave-frequencies-explained-2/
12.
Difference Guru
,
2021
, “
Difference Between White and Gray Matter
,” Difference Guru, Feb. 9, 2018, accessed Nov. 10, https://difference.guru/difference-between-white-and-gray-matter/
13.
Yin
,
E.
,
Zhou
,
Z.
,
Jiang
,
J.
,
Yu
,
Y.
, and
Hu
,
D.
,
2015
, “
A Dynamically Optimized SSVEP Brain Computer Interface (BCI) Speller
,”
IEEE Trans. Biomed. Eng.
,
62
(
6
), pp.
1447
1456
.10.1109/TBME.2014.2320948
14.
Gembler
,
F.
,
Stawicki
,
P.
,
Saboor
,
A.
, and
Volosyak
,
I.
,
2019
, “
Dynamic Time Window Mechanism for Time Synchronous VEP-Based BCIs - Performance Evaluation With a Dictionary - Supported BCI Speller Employing SSVEP and c-VEP
,”
PLoS One
,
14
(
6
), p.
e0218177
.10.1371/journal.pone.0218177
15.
Rakotomamonjy
,
A.
, and
Guigue
,
V.
,
2008
, “
BCI Competition III: Dataset II—Ensemble of SVMs for BCI P300 Speller
,”
IEEE Trans. Biomed. Eng.
,
55
(
3
), pp.
1147
1154
.10.1109/TBME.2008.915728
16.
Kerous
,
B.
,
Skola
,
F.
, and
Liarokapis
,
F.
,
2018
, “
EEG-Based BCI and Video Games: A Progress Report
,”
Virtual Reality
,
2018
, pp.
119
135
.10.1007/s10055-017-0328-x
17.
Spataro
,
R.
,
Chella
,
A.
,
Allison
,
B.
,
Giardina
,
M.
,
Sorbello
,
R.
,
Tramonte
,
S.
,
Guger
,
C.
, and
La Bella
,
S.
,
2017
, “
Reaching and Grasping a Glass of Water by Locked-In ALS Patients Through a BCI-Controlled Humanoid Robot
,”
Front. Human Neurosci.
,
11
(
68
), pp.
1
10
.10.3389/fnhum.2017.00068
18.
Tang
,
J.
,
Liu
,
Y.
,
Hu
,
D.
, and
Zhou
,
Z.
,
2018
, “
Towards BCI-Actuated Smart Wheelchair System
,”
BioMed. Eng. OnLine
, 17, p. 111.10.1186/s12938-018-0545-x
19.
Li
,
Y.
,
Pan
,
J.
, and
Yu
,
Z.
,
2013
, “
A Hybrid BCI System Combining P300 and SSVEP and Its Application to Wheelchair Control
,”
IEEE Trans. Biomed. Eng.
,
60
(
11
), pp.
3156
3166
.10.1109/TBME.2013.2270283
20.
Zhang
,
R.
,
Li
,
Y.
,
Yan
,
Y.
,
Zhang
,
H.
,
Wu
,
S.
,
Yu
,
T.
, and
Gu
,
Z.
,
2016
, “
Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
1
), pp.
128
139
.10.1109/TNSRE.2015.2439298a
21.
Iturrate
,
I.
,
Antelis
,
M.
,
Kubler
,
A.
, and
Minguez
,
J.
,
2009
, “
A Noninvasive Brain-Actuated Wheelchair Based on a P300 Neurophysiological Protocol and Automated Navigation
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
614
627
.10.1109/TRO.2009.2020347
22.
Kline
,
A.
, and
Desai
,
J.
,
2015
, “
Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
,”
Int. J. Biomed. Biol. Eng.
,
9
(
4
), pp.
323
327
.10.5281/zenodo.1100078
23.
Huang
,
D.
,
Qian
,
K.
,
Fei
,
D.
,
Jia
,
W.
,
Chen
,
X.
, and
Bai
,
O.
,
2012
, “
Electroencephalography (EEG)-Based Brain- Computer Interface (BCI): A 2-D Virtual Wheelchair Control Based on Event-Related Desynchronization/Synchronization and Sate Control
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
20
(
3
), pp.
379
388
.10.1109/TNSRE.2012.2190299
24.
Leeb
,
R.
,
Friedman
,
D.
,
Muller-Putz
,
R. G.
,
Scherer
,
R.
,
Slater
,
M.
, and
Pfurtscheller
,
G.
,
2007
, “
Self-Paced (Asynchronous) BCI Control of a Wheelchair in Virtual Environments: A Case Study With a Tetraplegic
,”
Comput. Intell. Neurosci.
,
2007
, pp.
1
8
.10.1155/2007/79642
25.
Wang
,
C.
,
Xia
,
B.
,
Li
,
J.
,
Yang
,
W.
,
Xiao
,
D.
,
Velez
,
A. C.
, and
Yang
,
H.
,
2011
, “
Motor Imagery BCI-Based Robot Arm System
,”
2011 Seventh International Conference on Natural Computation, Shanghai
, July 26–28, pp.
181
184
.10.1109/ICNC.2011.6021923
26.
Bousseta
,
R.
,
El Ouakouak
,
I.
,
Gharbi
,
M.
, and
Regragui
,
F.
,
2018
, “
EEG Based Brain Computer Interface for Controlling a Robot Arm Movement Through Thought
,”
IRBM
,
39
(
2
), pp.
129
135
.10.1016/j.irbm.2018.02.001
27.
Minati
,
L.
,
Yoshimura
,
N.
, and
Koike
,
Y.
,
2016
, “
Hybrid Control of a Vision-Guided Robot Arm by EOG, EMG, EEG Biosignals and Head Movement Acquired Via a Consumer-Grade Wearable Device
,”
IEEE Access
,
4
, pp.
9528
9541
.10.1109/ACCESS.2017.2647851
28.
Emotiv
,
2014
, “
Emotiv Epoc & Testbench Specifications
,” Emotiv, accessed June 2019, www.emotiv.com/files/Emotiv-EPOC-Product-Sheet-2014.pdf
29.
Renard
,
Y.
,
Lotte
,
F.
,
Gibert
,
G.
,
Congedo
,
M.
,
Maby
,
E.
,
Delannoy
,
V.
,
Bertrand
,
O.
, and
Lécuyer
,
A.
,
2010
, “
OpenViBE: An Open-Source Software Platform to Design, Test, and Use Brain–Computer Interfaces in Real and Virtual Environments
,”
Presence
,
19
(
1
), pp.
35
53
.10.1162/pres.19.1.35
30.
Swartz Center for Computational Neuroscience, 2020,
What is EEGLAB?
,” University of California, San Diego, CA, accessed Sept. 20, 2020, https://sccn.ucsd.edu/eeglab/index.php
31.
Cohen
,
M. X.
,
2014
,
Analyzing Neural Time Series Data: Theory and Practice
,
The MIT Press
,
Cambridge, UK
.
32.
Makeig
,
S.
,
Debener
,
S.
,
Onton
,
J.
, and
Delorme
,
D.
,
2004
, “
Mining Event-Related Brain Dynamics
,”
Tends Cognitive Sci.
,
8
(
5
), pp.
204
210
.10.1016/j.tics.2004.03.008
33.
Miyakoshi
,
M.
,
2020
, “
Makoto's Preprocessing Pipeline
,” Nov. 27 2019, accessed Sept. 20, 2020, https://sccn.ucsd.edu/wiki/Makoto's_preprocessing_pipeline
34.
Kothe
,
C. A.
, and
Makeig
,
S.
,
2013
, “
BCILAB: A Platform for Brain-Computer Interface Development
,”
J. Neural Eng.
,
10
(
5
), p.
056014
.10.1088/1741-2560/10/5/056014
35.
Kothe
,
C. A.
,
Medine
,
D.
,
Boulay
,
C.
,
Grivich
,
M.
, and
Stenner
,
T.
,
2020
, “
LabStreamingLayer's Documentation
,” SCCN, accessed Sept. 27, 2020, https://labstreaminglayer.readthedocs.io/index.html
You do not currently have access to this content.