Abstract

Microneedle arrays provide a minimally invasive platform for ocular drug delivery. Self-adhesive microneedle arrays, which incorporate barb-like locking features, have been developed to secure the array in place without using any adhesive. However, these locking features may increase extraction forces when removing the microneedle array once the drug delivery is completed. In this study, we demonstrated a photoresponsive hydrogel microneedle array that can self-adhere to the application site upon swelling and can deswell for easy removal when illuminated with light. The photoresponsive hydrogel microneedle arrays were made by a mixture of polyvinyl alcohol and spiropyran-conjugated N-isopropylacrylamide (NIPPAM). Experimental results show a significant decrease in extraction force after the microneedle of 20% spiropyran-conjugated NIPPAM was illuminated with light for 15 min. At the same time, the width of the interlocking feature also deswelled by 20% due to the photoresponsive behavior. However, the addition of the spiropyran-conjugated NIPPAM also weakens the mechanical properties of the microneedle and thus increase in insertion force.

References

1.
de Jong
,
E. K.
,
Geerlings
,
M. J.
, and
den Hollander
,
A. I.
,
2020
, “
Chapter 10 - Age-Related Macular Degeneration
,”
Genetics and Genomics of Eye Disease
,
X. R.
Gao
, ed.,
Academic Press
, Waltham, MA, pp.
155
180
.
2.
Evans
,
J. R.
,
Cochrane Eyes and Vision Group
., and
Lawrenson
,
J. G.
,
2017
, “
Antioxidant Vitamin and Mineral Supplements for Slowing the Progression of Age‐Related Macular Degeneration
,”
Cochrane Database Systematic Rev.
,
2017
(
9
), pp. 1–105.10.1002/14651858.CD000254.pub4
3.
Rosenfeld
,
P. J.
,
Rich
,
R. M.
, and
Lalwani
,
G. A.
,
2006
, “
Ranibizumab: Phase III Clinical Trial Results
,”
Ophthalmol. Clin.
,
19
(
3
), pp.
361
372
.10.1016/j.ohc.2006.05.009
4.
Nicholson
,
B. P.
, and
Schachat
,
A. P.
,
2010
, “
A Review of Clinical Trials of Anti-VEGF Agents for Diabetic Retinopathy
,”
Graefe's Archive Clinical Exp. Ophthalmol.
,
248
(
7
), pp.
915
930
.10.1007/s00417-010-1315-z
5.
Martin
,
D. F.
,
Maguire
,
M. G.
,
Ying
,
G. S.
,
Grunwald
,
J. E.
,
Fine
,
S. L.
, and
Jaffe
,
G. J.
,
2011
, “
Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration
,”
New Engl. J. Med.
,
364
(
20
), pp.
1897
1908
.10.1056/nejmoa1102673
6.
Martin
,
D. F.
,
Maguire
,
M. G.
,
Fine
,
S. L.
,
Ying
,
G. S.
,
Jaffe
,
G. J.
,
Grunwald
,
J. E.
,
Toth
,
C.
,
Redford
,
M.
, and
Ferris
,
F. L.
, III
,
2012
, “
Ranibizumab and Bevacizumab for Treatment of Neovascular Age-Related Macular Degeneration: Two-Year Results
,”
Ophthalmology
,
119
(
7
), pp.
1388
1398
.10.1016/j.ophtha.2012.03.053
7.
Chakravarthy
,
U.
,
Harding
,
S. P.
,
Rogers
,
C. A.
,
Downes
,
S. M.
,
Lotery
,
A. J.
,
Wordsworth
,
S.
, and
Reeves
,
B. C.
,
2012
, “
Ranibizumab Versus Bevacizumab to Treat Neovascular Age-Related Macular Degeneration: One-Year Findings From the IVAN Randomized Trial
,”
Ophthalmology
,
119
(
7
), pp.
1399
1411
.10.1016/j.ophtha.2012.04.015
8.
Schwartz
,
S. G.
,
Scott
,
I. U.
, Jr
,
F
,
H. W.
, and
Stewart
,
M. W.
,
2014
, “
Drug Delivery Techniques for Treating Age-Related Macular Degeneration
,”
Expert Opin. Drug Delivery
,
11
(
1
), pp.
61
68
.10.1517/17425247.2013.859135
9.
Waite
,
D.
,
Wang
,
Y.
,
Jones
,
D.
,
Stitt
,
A.
, and
Singh
,
T. R. R.
,
2017
, “
Posterior Drug Delivery Via Periocular Route: Challenges and Opportunities
,”
Ther. Deliv.
,
8
(
8
), pp.
685
699
.10.4155/tde-2017-0097
10.
Lee
,
S. S.
,
Hughes
,
P.
,
Ross
,
A. D.
, and
Robinson
,
M. R.
,
2010
, “
Biodegradable Implants for Sustained Drug Release in the Eye
,”
Pharm. Res.
,
27
(
10
), pp.
2043
2053
.10.1007/s11095-010-0159-x
11.
Dubald
,
M.
,
Bourgeois
,
S.
,
Andrieu
,
V.
, and
Fessi
,
H.
,
2018
, “
Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review
,”
Pharmaceutics
,
10
(
1
), p.
10
.10.3390/pharmaceutics10010010
12.
Falavarjani
,
K. G.
, and
Nguyen
,
Q. D.
,
2013
, “
Adverse Events and Complications Associated With Intravitreal Injection of Anti-VEGF Agents: A Review of Literature
,”
Eye (London)
,
27
(
7
), pp.
787
794
.10.1038/eye.2013.107
13.
Jung
,
J. H.
,
Chiang
,
B.
,
Grossniklaus
,
H. E.
, and
Prausnitz
,
M. R.
,
2018
, “
Ocular Drug Delivery Targeted by Iontophoresis in the Suprachoroidal Space Using a Microneedle
,”
J. Controlled Release
,
277
, pp.
14
22
.10.1016/j.jconrel.2018.03.001
14.
Khandan
,
O.
,
Kahook
,
M. Y.
, and
Rao
,
M. P.
,
2016
, “
Fenestrated Microneedles for Ocular Drug Delivery
,”
Sens. Actuators B: Chem.
,
223
, pp.
15
23
.10.1016/j.snb.2015.09.071
15.
Amer
,
M.
, and
Chen
,
R. K.
,
2020
, “
Self-Adhesive Microneedles With Interlocking Features for Sustained Ocular Drug Delivery
,”
Macromol. Biosci.
,
20
(
6
), p.
2000089
.10.1002/mabi.202000089
16.
Bhattarai
,
N.
,
Ramay
,
H. R.
,
Gunn
,
J.
,
Matsen
,
F. A.
, and
Zhang
,
M.
,
2005
, “
PEG-Grafted Chitosan as an Injectable Thermosensitive Hydrogel for Sustained Protein Release
,”
J. Controlled Release
,
103
(
3
), pp.
609
624
.10.1016/j.jconrel.2004.12.019
17.
Bhattarai
,
N.
,
Gunn
,
J.
, and
Zhang
,
M.
,
2010
, “
Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery
,”
Adv. Drug Delivery Rev.
,
62
(
1
), pp.
83
99
.10.1016/j.addr.2009.07.019
18.
Wallace
,
D. G.
, and
Rosenblatt
,
J.
,
2003
, “
Collagen Gel Systems for Sustained Delivery and Tissue Engineering
,”
Adv. Drug Delivery Rev.
,
55
(
12
), pp.
1631
1649
.10.1016/j.addr.2003.08.004
19.
Donnelly
,
R. F.
,
Morrow
,
D. I. J.
,
McCrudden
,
M. T. C.
,
Alkilani
,
A. Z.
,
Vicente-Pérez
,
E. M.
,
O'Mahony
,
C.
,
González-Vázquez
,
P.
,
McCarron
,
P. A.
, and
Woolfson
,
A. D.
,
2014
, “
Hydrogel-Forming and Dissolving Microneedles for Enhanced Delivery of Photosensitizers and Precursors
,”
Photochem Photobiol
,
90
(
3
), pp.
641
647
.10.1111/php.12209
20.
Donnelly
,
R. F.
,
Singh
,
T. R. R.
,
Garland
,
M. J.
,
Migalska
,
K.
,
Majithiya
,
R.
,
McCrudden
,
C. M.
,
Kole
,
P. L.
,
Mahmood
,
T. M. T.
,
McCarthy
,
H. O.
, and
Woolfson
,
A. D.
,
2012
, “
Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery
,”
Adv. Funct. Mater.
,
22
(
23
), pp.
4879
4890
.10.1002/adfm.201200864
21.
Donnelly
,
R. F.
,
Singh
,
T. R. R.
,
Alkilani
,
A. Z.
,
McCrudden
,
M. T. C.
,
O'Neill
,
S.
,
O'Mahony
,
C.
,
Armstrong
,
K.
,
McLoone
,
N.
,
Kole
,
P.
, and
Woolfson
,
A. D.
,
2013
, “
Hydrogel-Forming Microneedle Arrays Exhibit Antimicrobial Properties: Potential for Enhanced Patient Safety
,”
Int. J. Pharm.
,
451
(
1–2
), pp.
76
91
.10.1016/j.ijpharm.2013.04.045
22.
Amer
,
M.
, and
Chen
,
K.-R.
,
2020
, “
Hydrogel-Forming Microneedle Arrays for Sustained and Controlled Ocular Drug Delivery
,”
ASME J. Eng. Sci. Med. Diag. Ther.
,
3
(
4
), p. 041003.10.1115/1.4048481
23.
Vote
,
B. J.
, and
Elder
,
M. J.
,
2000
, “
Cyanoacrylate Glue for Corneal Perforations: A Description of a Surgical Technique and a Review of the Literature
,”
Clin. Experiment. Ophthalmol.
,
28
(
6
), pp.
437
442
.10.1046/j.1442-9071.2000.00351.x
24.
Artzi
,
N.
,
Shazly
,
T.
,
Baker
,
A. B.
,
Bon
,
A.
, and
Edelman
,
E. R.
,
2009
, “
Aldehyde-Amine Chemistry Enables Modulated Biosealants With Tissue-Specific Adhesion
,”
Adv. Mater. Weinheim
,
21
(
32–33
), pp.
3399
3403
.10.1002/adma.200900340
25.
Yang
,
S. Y.
,
O'Cearbhaill
,
E. D.
,
Sisk
,
G. C.
,
Park
,
K. M.
,
Cho
,
W. K.
,
Villiger
,
M.
,
Bouma
,
B. E.
,
Pomahac
,
B.
, and
Karp
,
J. M.
,
2013
, “
A Bio-Inspired Swellable Microneedle Adhesive for Mechanical Interlocking With Tissue
,”
Nat. Commun.
,
4
(
1
), p.
1702
.10.1038/ncomms2715
26.
Haq
,
M. A.
,
Su
,
Y.
, and
Wang
,
D.
,
2017
, “
Mechanical Properties of PNIPAM Based Hydrogels: A Review
,”
Mater. Sci. Eng.: C
,
70
, pp.
842
855
.10.1016/j.msec.2016.09.081
27.
Stumpel
,
J. E.
,
Liu
,
D.
,
Broer
,
D. J.
, and
Schenning
,
A. P. H. J.
,
2013
, “
Photoswitchable Hydrogel Surface Topographies by Polymerisation-Induced Diffusion
,”
Chem. A Eur. J.
,
19
(
33
), pp.
10922
10927
.10.1002/chem.201300852
28.
Satoh
,
T.
,
Sumaru
,
K.
,
Takagi
,
T.
, and
Kanamori
,
T.
,
2011
, “
Fast-Reversible Light-Driven Hydrogels Consisting of Spirobenzopyran-Functionalized Poly(N-Isopropylacrylamide)
,”
Soft Mat.
,
7
(
18
), pp.
8030
8034
.10.1039/c1sm05797a
29.
Coleman
,
S.
,
ter Schiphorst
,
J.
,
Ben Azouz
,
A.
,
Bakker
,
S.
,
Schenning
,
A. P. H. J.
, and
Diamond
,
D.
,
2017
, “
Tuning Microfluidic Flow by Pulsed Light Oscillating Spiropyran-Based Polymer Hydrogel Valves
,”
Sens. Actuators B: Chem.
,
245
, pp.
81
86
.10.1016/j.snb.2017.01.112
30.
ter Schiphorst
,
J.
,
Coleman
,
S.
,
Stumpel
,
J. E.
,
Ben Azouz
,
A.
,
Diamond
,
D.
, and
Schenning
,
A. P. H. J.
,
2015
, “
Molecular Design of Light-Responsive Hydrogels, for In Situ Generation of Fast and Reversible Valves for Microfluidic Applications
,”
Chem. Mater.
,
27
(
17
), pp.
5925
5931
.10.1021/acs.chemmater.5b01860
31.
Bediz
,
B.
,
Korkmaz
,
E.
,
Khilwani
,
R.
,
Donahue
,
C.
,
Erdos
,
G.
,
Falo
,
L. D.
, and
Ozdoganlar
,
O. B.
,
2014
, “
Dissolvable Microneedle Arrays for Intradermal Delivery of Biologics: Fabrication and Application
,”
Pharm Res.
,
31
(
1
), pp.
117
135
.10.1007/s11095-013-1137-x
32.
Gupta
,
S.
,
Goswami
,
S.
, and
Sinha
,
A.
,
2012
, “
A Combined Effect of Freeze–Thaw Cycles and Polymer Concentration on the Structure and Mechanical Properties of Transparent PVA Gels
,”
Biomed. Mater.
,
7
(
1
), p.
015006
.10.1088/1748-6041/7/1/015006
33.
Hassan
,
C. M.
, and
Peppas
,
N. A.
,
2000
, “
Structure and Morphology of Freeze/Thawed PVA Hydrogels
,”
Macromolecules
,
33
(
7
), pp.
2472
2479
.10.1021/ma9907587
34.
Chen
,
M.-C.
,
Huang
,
S.-F.
,
Lai
,
K.-Y.
, and
Ling
,
M.-H.
,
2013
, “
Fully Embeddable Chitosan Microneedles as a Sustained Release Depot for Intradermal Vaccination
,”
Biomaterials
,
34
(
12
), pp.
3077
3086
.10.1016/j.biomaterials.2012.12.041
You do not currently have access to this content.