Abstract

An accurate assessment of hip fracture risk requires a proper consideration of parameters affecting the fracture. In general, hip fracture is assessed based on bone mineral density (BMD) and load amount, but hip fracture is an outcome of the interaction of the parameters such as loading directions, bone density, which are often disregarded. Assessing the effect of the parameters individually may not correctly reflect the root cause of the hip fracture. Hence, this research aims at analyzing the significance of parameters and their interaction in assessing the fracture risk. A multiple regression analysis has been conducted considering bone density (ρash), different loading directions during sideways fall, represented by load angle (α) about femoral shaft on the coronal plane and angle (β) about femoral neck (FN) axis on the transverse plane as independent parameters and fracture risk index (FRI) as a dependent parameter. The statistical results showing the significant value of 0.7321 for α, and 0.0001 for β and ρash indicate that the effect of loading direction (α) does not have impact on fracture risk in comparison with the loading direction (β) and ρash. Furthermore, the analysis of the interaction of parameters shows that the impact of β on fracture risk may depends more on bone density.

References

References
1.
Basso
,
T.
,
Klaksvik
,
J.
,
Syversen
,
U.
, and
Foss
,
O. A.
,
2012
, “
Biomechanical Femoral Neck Fracture Experiments—A Narrative Review
,”
Injury
,
43
(
10
), pp.
1633
1639
.10.1016/j.injury.2012.03.032
2.
Bettamer
,
A.
,
2012
, “
Prediction of Proximal Femur Fracture: Finite Element Modeling Based on Mechanical Damage and Experimental Validation
,”
Ph.D. thesis
, University of Orleans, Orléans, France.https://www.researchgate.net/publication/281599449_prediction_of_proximal_femur_fracture_finite_element_modeling_based_on_mechanical_damage_and_experimental_validation
3.
HCUPnet
,
2012
, “
Healthcare Cost and Utilization Project (HCUP)
,”
Agency for Healthcare Research and Quality
,
Rockville, MD
.
4.
Szulc
,
P.
,
Marchand
,
F.
,
Duboeuf
,
F.
, and
Delmas
,
P.
,
2000
, “
Cross-Sectional Assessment of Age-Related Bone Loss in Men: The MINOS Study
,”
Bone
,
26
(
2
), pp.
123
129
.10.1016/S8756-3282(99)00255-0
5.
Parkkari
,
J.
,
Kannus
,
P.
,
Palvanen
,
M.
,
Natri
,
A.
,
Vainio
,
J.
,
Aho
,
H.
,
Vuori
,
I.
, and
Järvinen
,
M.
,
1999
, “
Majority of Hip Fractures Occur as a Result of a Fall and Impact on the Greater Trochanter of the Femur: A Prospective Controlled Hip Fracture Study With 206 Consecutive Patients
,”
Calcif. Tissue Int.
,
65
(
3
), pp.
183
187
.10.1007/s002239900679
6.
Hayes
,
W. C.
,
Myers
,
E. R.
,
Morris
,
J. N.
,
Gerhart
,
T. N.
,
Yett
,
H. S.
, and
Lipsitz
,
L. A.
,
1993
, “
Impact Near the Hip Dominates Fracture Risk in Elderly Nursing Home Residents Who Fall
,”
Calcif. Tissue Int.
,
52
(
3
), pp.
192
198
.10.1007/BF00298717
7.
Johnell
,
O.
,
1997
, “
The Socioeconomic Burden of Fractures: Today and in the 21st Century
,”
Am. J. Med.
,
103
(
2
), pp.
S20
S26
.10.1016/S0002-9343(97)90023-1
8.
Adams
,
J. E.
,
2013
, “
Advances in Bone Imaging for Osteoporosis
,”
Nat. Rev. Endocrinol.
,
9
(
1
), pp.
28
42
.10.1038/nrendo.2012.217
9.
Ford
,
C. M.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
2009
, “
The Effect of Impact Direction on the Structural Capacity of the Proximal Femur During Falls
,”
J. Bone Miner. Res.
,
11
(
3
), pp.
377
383
.10.1002/jbmr.5650110311
10.
Pinilla
,
T.
,
Boardman
,
K.
,
Bouxsein
,
M.
,
Myers
,
E.
, and
Hayes
,
W.
,
1996
, “
Impact Direction From a Fall Influences the Failure Load of the Proximal Femur as Much as Age-Related Bone Loss
,”
Calcif. Tissue Int.
,
58
(
4
), pp.
231
235
.10.1007/BF02508641
11.
Luo
,
Y.
,
Ferdous
,
Z.
, and
Leslie
,
W.
,
2011
, “
A Preliminary Dual-Energy X-Ray Absorptiometry-Based Finite Element Model for Assessing Osteoporotic Hip Fracture Risk
,”
Proc. Inst. Mech. Eng., Part H
,
225
(
12
), pp.
1188
1195
.10.1177/0954411911424975
12.
Luo
,
Y.
,
Ferdous
,
Z.
, and
Leslie
,
W. D.
,
2013
, “
Precision Study of DXA‐Based Patient‐Specific Finite Element Modeling for Assessing Hip Fracture Risk
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
5
), pp.
615
629
.10.1002/cnm.2548
13.
Faisal
,
T. R.
, and
Luo
,
Y.
,
2017
, “
Study of the Variations of Fall Induced Hip Fracture Risk Between Right and Left Femurs Using CT-Based FEA
,”
Biomed. Eng. OnLine
,
16
(
1
), p.
116
.10.1186/s12938-017-0407-y
14.
Faisal
,
T. R.
, and
Luo
,
Y.
,
2016
, “
Study of Stress Variations in Single-Stance and Sideways Fall Using Image-Based Finite Element Analysis
,”
BioMed. Mater. Eng.
,
27
(
1
), pp.
1
14
.10.3233/BME-161563
15.
Keller
,
T. S.
,
1994
, “
Predicting the Compressive Mechanical Behaviour of Bone
,”
J. Biomech.
,
27
(
9
), pp.
1159
1168
.10.1016/0021-9290(94)90056-6
16.
Kheirollahi
,
H.
, and
Luo
,
Y.
,
2015
, “
Assessment of Hip Fracture Risk Using Cross-Section Strain Energy Determined by QCT-Based Finite Element Modeling
,”
BioMed. Res. Int.
,
2015
, pp.
1
15
.10.1155/2015/413839
17.
Ariza
,
O. R.
,
2010
, “A Novel Approach to Finite Element Analysis of Hip Fractures Due to Sideways Falls,”
M.Sc. thesis
,
University of Waterloo
, Waterloo, ON, Canada.10.14288/1.0166898
18.
Lotz
,
J. C.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
,
1991
, “
Fracture Prediction for the Proximal Femur Using Finite Element Models—Part I: Linear Analysis
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
353
360
.10.1115/1.2895412
19.
Keyak
,
J. H.
,
Rossi
,
S. A.
,
Jones
,
K. A.
, and
Skinner
,
H. B.
,
1997
, “
Prediction of Femoral Fracture Load Using Automated Finite Element Modeling
,”
J. Biomech.
,
31
(
2
), pp.
125
133
.10.1016/S0021-9290(97)00123-1
20.
Schileo
,
E.
,
Taddei
,
F.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2008
, “
Subject-Specific Finite Element Models Implementing a Maximum Principal Strain Criterion Are Able to Estimate Failure Risk and Fracture Location on Human Femurs Tested In vitro
,”
J. Biomech.
,
41
(
2
), pp.
356
367
.10.1016/j.jbiomech.2007.09.009
21.
Marco
,
M.
,
Giner
,
E.
,
Caeiro-Rey
,
J. R.
,
Miguélez
,
M. H.
, and
Larraínzar-Garijo
,
R.
,
2019
, “
Numerical Modelling of Hip Fracture Patterns in Human Femur
,”
Comput. Methods Programs Biomed.
,
173
, pp.
67
75
.10.1016/j.cmpb.2019.03.010
22.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1975
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
(
6
), pp.
393
405
.10.1016/0021-9290(75)90075-5
23.
Nishiyama
,
K. K.
,
Gilchrist
,
S.
,
Guy
,
P.
,
Cripton
,
P.
, and
Boyd
,
S. K.
,
2013
, “
Proximal Femur Bone Strength Estimated by a Computationally Fast Finite Element Analysis in a Sideways Fall Configuration
,”
J. Biomech.
,
46
(
7
), pp.
1231
1236
.10.1016/j.jbiomech.2013.02.025
24.
Kheirollahi
,
H.
, and
Luo
,
Y.
,
2015
, “
Identification of High Stress and Strain Regions in Proximal Femur During Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model
,”
Int. J. Biomed. Biol. Eng.
,
9
(
8
), pp.
541
548
.10.5281/zenodo.1107764
25.
Lee
,
Y.
,
Ogihara
,
N.
, and
Lee
,
T.
,
2019
, “
Assessment of Finite Element Models for Prediction of Osteoporotic Fracture
,”
J. Mech. Behav. Biomed. Mater.
,
97
, pp.
312
320
.10.1016/j.jmbbm.2019.05.018
26.
van den Munckhof
,
S.
, and
Zadpoor
,
A. A.
,
2014
, “
How Accurately Can we Predict the Fracture Load of the Proximal Femur Using Finite Element Models?
,”
Clin. Biomech.
,
29
(
4
), pp.
373
380
.10.1016/j.clinbiomech.2013.12.018
27.
Zhang
,
R.
,
Gong
,
H.
,
Fang
,
J.
,
Gao
,
Z.
, and
Zhu
,
D.
,
2014
, “
Prediction of Proximal Femoral Fracture in Sideways Falls Using Non Linear Dynamic Finite Element Analysis
,”
J. Mech. Med. Biol.
,
14
(
2
), p.
1450026
.10.1142/S0219519414500262
28.
Gundi
,
S.
,
Gualtieri
,
C. R. G.
, and
Malavolta
,
N.
,
1999
, “
Geometry of Proximal Femur in the Prediction of Hip Fracture in Osteoporotic Women
,”
Br. J. Radiol.
,
72
(
860
), pp.
729
733
.10.1259/bjr.72.860.10624337
29.
Gong
,
H.
,
Zhang
,
M.
,
Fan
,
Y.
,
Kwok
,
W. L.
, and
Leung
,
P. C.
,
2012
, “
Relationships Between Femoral Strength Evaluated by Nonlinear Finite Element Analysis and BMD, Material Distribution and Geometric Morphology
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1575
1595
.10.1007/s10439-012-0514-7
You do not currently have access to this content.