Abstract

Vascular phantoms mimicking human vessels are commonly used to perform in vitro hemodynamic studies for a number of bioengineering applications, such as medical device testing, clinical simulators, and medical imaging research. Simplified geometries are useful to perform parametric studies, but accurate representations of the complexity of the in vivo system are essential in several applications as personalized features have been found to play a crucial role in the management and treatment of many vascular pathologies. Despite numerous studies employing vascular phantoms produced through different manufacturing techniques, an economically viable technique, able to generate large complex patient-specific vascular anatomies, accessible to nonspecialist laboratories, still needs to be identified. In this work, a manufacturing framework to create personalized and complex phantoms with easily accessible and affordable materials and equipment is presented. In particular, three-dimensional (3D) printing with polyvinyl alcohol (PVA) is employed to create the mold, and lost core casting is performed to create the physical model. The applicability and flexibility of the proposed fabrication protocol is demonstrated through three phantom case studies—an idealized aortic arch, a patient-specific aortic arch, and a patient-specific aortic dissection model. The phantoms were successfully manufactured in a rigid silicone, a compliant silicone, and a rigid epoxy resin, respectively; using two different 3D printers and two casting techniques, without the need of specialist equipment.

References

1.
Botnar
,
R.
,
Rappitsch
,
G.
,
Beat Scheidegger
,
M.
,
Liepsch
,
D.
,
Perktold
,
K.
, and
Boesiger
,
P.
,
2000
, “
Hemodynamics in the Carotid Artery Bifurcation
,”
J. Biomech.
,
33
(
2
), pp.
137
144
.10.1016/S0021-9290(99)00164-5
2.
van Ooij
,
P.
,
Guédon
,
A.
,
Poelma
,
C.
,
Schneiders
,
J.
,
Rutten
,
M. C. M.
,
Marquering
,
H. A.
,
Majoie
,
C. B.
,
van Bavel
,
E.
, and
Nederveen
,
A. J.
,
2012
, “
Complex Flow Patterns in a Real-Size Intracranial Aneurysm Phantom: Phase Contrast MRI Compared With Particle Image Velocimetry and Computational Fluid Dynamics
,”
NMR Biomed.
,
25
(
1
), pp.
14
26
.10.1002/nbm.1706
3.
Carey
,
R. F.
,
Herman
,
B. A.
,
Robinson
,
R. A.
,
Stewart
,
H. F.
,
Hoops
,
R. G.
, and
Douglas
,
G. H.
,
1991
, “Phantom for Evaluation of Prosthetic Valves and Cardiac Ultrasound Procedures,” U.S. Patent No. 5,052,934.
4.
Russ
,
M.
,
OHara
,
R.
,
Nagesh
,
S. S.
,
Mokin
,
M.
,
Jimenez
,
C.
,
Siddiqui
,
A.
,
Bednarek
,
D.
,
Rudin
,
S.
, and
Ionita
,
C.
,
2015
, “
Treatment Planning for Image-Guided Neuro-Vascular Interventions Using Patient-Specific 3D Printed Phantoms
,”
Proc. SPIE Int. Soc. Opt. Eng.
, 9417, p.
941726
.10.1117/12.2081997
5.
Tsai
,
T. T.
,
Schlicht
,
M. S.
,
Khanafer
,
K.
,
Bull
,
J. L.
,
Valassis
,
D. T.
,
Williams
,
D. M.
,
Berguer
,
R.
, and
Eagle
,
K. A.
,
2008
, “
Tear Size and Location Impacts False Lumen Pressure in an Ex Vivo Model of Chronic Type B Aortic Dissection
,”
J. Vasc. Surg.
,
47
(
4
), pp.
844
851
.10.1016/j.jvs.2007.11.059
6.
Plesniak
,
M. W.
, and
Bulusu
,
K. V.
,
2016
, “
Morphology of Secondary Flows in a Curved Pipe With Pulsatile Inflow
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
101203
.10.1115/1.4033962
7.
Rudenick
,
P. A.
,
Bijnens
,
B. H.
,
García-Dorado
,
D.
, and
Evangelista
,
A.
,
2013
, “
An In Vitro Phantom Study on the Influence of Tear Size and Configuration on the Hemodynamics of the Lumina in Chronic Type B Aortic Dissections
,”
J. Vasc. Surg.
,
57
(
2
), pp.
464
474.
10.1016/j.jvs.2012.07.008
8.
Bonfanti
,
M.
,
Balabani
,
S.
,
Greenwood
,
J. P.
,
Puppala
,
S.
,
Homer-Vanniasinkam
,
S.
, and
Díaz-Zuccarini
,
V.
,
2017
, “
Computational Tools for Clinical Support: A Multi-Scale Compliant Model for Haemodynamic Simulations in an Aortic Dissection Based on Multi-Modal Imaging Data
,”
J. R. Soc., Interface
,
14
(
136
), p.
20170632
.10.1098/rsif.2017.0632
9.
Bonfanti
,
M.
,
Balabani
,
S.
,
Alimohammadi
,
M.
,
Agu
,
O.
,
Homer-Vanniasinkam
,
S.
, and
Díaz-Zuccarini
,
V.
,
2018
, “
A Simplified Method to Account for Wall Motion in Patient-Specific Blood Flow Simulations of Aortic Dissection: Comparison With Fluid-Structure Interaction
,”
Med. Eng. Phys.
,
58
, pp.
72
79
.10.1016/j.medengphy.2018.04.014
10.
Franzetti
,
G.
,
Diaz-Zuccarini
,
V.
, and
Balabani
,
S.
,
2019
, “
Design of an In Vitro Mock Circulatory Loop to Reproduce Patient-Specific Vascular Conditions: Towards Precision Medicine
,”
ASME J. Med. Diagn.
,
2
(
4
), p.
041004
.10.1115/1.4044488
11.
Bonfanti
,
M.
,
Franzetti
,
G.
,
Maritati
,
G.
,
Homer-Vanniasinkam
,
S.
,
Balabani
,
S.
, and
Diaz-Zuccarini
,
V.
,
2019
, “
Patient-Specific Haemodynamic Simulations of Complex Aortic Dissections Informed by Commonly Available Clinical Datasets
,”
Med. Eng. Phys.
,
71
, pp.
45
55
.10.1016/j.medengphy.2019.06.012
12.
Qin
,
E. C.
,
Sinkus
,
R.
,
Geng
,
G.
,
Cheng
,
S.
,
Green
,
M.
,
Rae
,
C. D.
, and
Bilston
,
L. E.
,
2013
, “
Combining MR Elastography and Diffusion Tensor Imaging for the Assessment of Anisotropic Mechanical Properties: A Phantom Study
,”
J. Magn. Reson. Imaging
,
37
(
1
), pp.
217
226
.10.1002/jmri.23797
13.
Medero
,
R.
,
García-Rodríguez
,
S.
,
François
,
C. J.
, and
Roldán-Alzate
,
A.
,
2017
, “
Patient-Specific In Vitro Models for Hemodynamic Analysis of Congenital Heart Disease—Additive Manufacturing Approach
,”
J. Biomech.
,
54
, pp.
111
116
.10.1016/j.jbiomech.2017.01.048
14.
Tango
,
A. M.
,
Salmonsmith
,
J.
,
Ducci
,
A.
, and
Burriesci
,
G.
,
2018
, “
Validation and Extension of a Fluid–Structure Interaction Model of the Healthy Aortic Valve
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
739
751
.10.1007/s13239-018-00391-1
15.
Bulusu
,
K. V.
, and
Plesniak
,
M. W.
,
2013
, “
Secondary Flow Morphologies Due to Model Stent-Induced Perturbations in a 180° Curved Tube During Systolic Deceleration
,”
Exp. Fluids
,
54
(
3
), p.
1493
.10.1007/s00348-013-1493-7
16.
de Zélicourt
,
D.
,
Kitajima
,
H.
,
Yoganathan
,
A. P.
,
Frakes
,
D.
, and
Pekkan
,
K.
,
2005
, “
Single-Step Stereolithography of Complex Anatomical Models for Optical Flow Measurements
,”
ASME J. Biomech. Eng.
,
127
(
1
), p.
204
.10.1115/1.1835367
17.
Biglino
,
G.
,
Verschueren
,
P.
,
Zegels
,
R.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2013
, “
Rapid Prototyping Compliant Arterial Phantoms for In-Vitro Studies and Device Testing
,”
J. Cardiovasc. Magnetic Reson.
,
15
(
1
), p.
2
.10.1186/1532-429X-15-2
18.
Tyszka
,
J. M.
,
Laidlaw
,
D. H.
, and
Asa
,
J. W.
,
2000
, “
Three-Dimensional, Time-Resolved (4D) Relative Pressure Mapping Using Magnetic Resonance Imaging—Tyszka—2000—Journal of Magnetic Resonance Imaging—Wiley Online Library
,”
J. Magn. Reson. Imaging
,
329
, pp.
321
329
.10.1002/1522-2586(200008)12:2<321::AID-JMRI15>3.0.CO;2-2
19.
Tai
,
N. R.
,
Salacinski
,
H. J.
,
Edwards
,
A.
,
Hamilton
,
G.
, and
Seifalian
,
A. M.
,
2000
, “
Compliance Properties of Conduits Used in Vascular Reconstruction
,”
Br. J. Surg.
,
87
(
11
), pp.
1516
1524
.10.1046/j.1365-2168.2000.01566.x
20.
Tanné
,
D.
,
Bertrand
,
E.
,
Kadem
,
L.
,
Pibarot
,
P.
, and
Rieu
,
R.
,
2010
, “
Assessment of Left Heart and Pulmonary Circulation Flow Dynamics by a New Pulsed Mock Circulatory System
,”
Exp. Fluids
,
48
(
5
), pp.
837
850
.10.1007/s00348-009-0771-x
21.
Cao
,
P.
,
Duhamel
,
Y.
,
Olympe
,
G.
,
Ramond
,
B.
, and
Langevin
,
F.
,
2013
, “
A New Production Method of Elastic Silicone Carotid Phantom Based on MRI Acquisition Using Rapid Prototyping Technique
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Osaka, Japan, July 3–7, pp.
5331
5334
.10.1109/EMBC.2013.6610753
22.
Yazdi
,
S. G.
,
Geoghegan
,
P. H.
,
Docherty
,
P. D.
,
Jermy
,
M.
, and
Khanafer
,
A.
,
2018
, “
A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques
,”
Ann. Biomed. Eng.
,
46
(
11
), pp.
1697
1721
.10.1007/s10439-018-2085-8
23.
Shmueli
,
K.
,
Thomas
,
D. L.
, and
Ordidge
,
R. J.
,
2007
, “
Design, Construction and Evaluation of an Anthropomorphic Head Phantom With Realistic Susceptibility Artifacts
,”
J. Magn. Reson. Imaging
,
26
(
1
), pp.
202
207
.10.1002/jmri.20993
24.
Geoghegan
,
P. H.
,
Buchmann
,
N. A.
,
Spence
,
C. J. T.
,
Moore
,
S.
, and
Jermy
,
M.
,
2012
, “
Fabrication of Rigid and Flexible Refractive-Index-Matched Flow Phantoms for Flow Visualisation and Optical Flow Measurements
,”
Exp. Fluids
,
52
(
5
), pp.
1331
1347
.10.1007/s00348-011-1258-0
25.
Allard
,
L.
,
Soulez
,
G.
,
Chayer
,
B.
,
Treyve
,
F.
,
Qin
,
Z.
, and
Cloutier
,
G.
,
2009
, “
Multimodality Vascular Imaging Phantoms: A New Material for the Fabrication of Realistic 3D Vessel Geometries
,”
Med. Phys.
,
36
(
8
), pp.
3758
3763
.10.1118/1.3171692
26.
Bulusu
,
K. V.
, and
Plesniak
,
M. W.
,
2018
, “
Insights on Arterial Secondary Flow Structures and Vortex Dynamics Gained Using the MRV Technique
,”
Int. J. Heat Fluid Flow
,
73
, pp.
143
153
.10.1016/j.ijheatfluidflow.2018.08.002
27.
Bücking
,
T.
,
Hill
,
E.
,
Robertson
,
J.
,
Maneas
,
E.
,
Plumb
,
A.
, and
Nikitichev
,
D.
,
2017
, “
From Medical Imaging Data to 3D Printed Anatomical Models
,”
PLoS One
,
12
(
5
), p.
e0178540
.10.1371/journal.pone.0178540
28.
Gallarello
,
A.
,
Palombi
,
A.
,
Annio
,
G.
,
Homer-Vanniasinkam
,
S.
,
Momi
,
E. D.
,
Maritati
,
G.
,
Torii
,
R.
,
Burriesci
,
G.
, and
Wurdemann
,
H. A.
,
2019
, “
Patient-Specific Aortic Phantom With Tunable Compliance
,”
ASME J. Med. Diagn.
,
2
(
4
), p.
041005
.10.1115/1.4044611
You do not currently have access to this content.