Abstract

Closed-form solution inverse kinematics has a unique advantage in robot control; it is quite difficult to be obtained through traditional methods as no effective analytic method has been identified so far, when the robot's joint configuration does not conform to the “Pieper Criterion.” In this paper, a new modeling method named extended Denavit-Hartenberg (DH) method was presented for solving this problem. And the conditions of robots' configuration that conform to the method have been given for different joints combinations. The precise closed-form solution to a minimally invasive surgical robot slave manipulator was obtained through this new method. The correctness of the new method was verified through simulation analyses; this study enriched robot kinematic modeling and the closed-form solution to inverse kinematics of Da Vinci surgical robot, and will help to obtain a fast, accurate, and general method of closed-form solution for the same kind of robots and provide the precondition for robot control and trajectory planning.

References

1.
Mavroidis
,
C.
, and
Roth
,
B.
,
1994
, “
Structural Parameters Which Reduce the Number of Manipulator Configurations
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
3
10
.10.1115/1.2919373
2.
Bruno
,
S.
, and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer Science & Business Media
,
Germany
, pp.
84
85
.
3.
Hayashibe
,
M.
,
Suzuki
,
N.
,
Hashizume
,
M.
,
Konishi
,
K.
, and
Hattori
,
A.
,
2006
, “
Robotic Surgery Setup Simulation With the Integration of Inverse-Kinematics Computation and Medical Imaging
,”
Comput. Meth. Prog. Biomed.
,
83
(
1
), pp.
63
72
.10.1016/j.cmpb.2006.04.010
4.
Hayashibe
,
M.
,
Suzuki
,
N.
,
Hashizume
,
M.
,
Kakeji
,
Y.
,
Konishi
,
K.
,
Suzuki
,
S.
, and
Hattori
,
A.
,
2005
, “
Preoperative Planning System for Surgical Robotics Setup With Kinematics and Haptics
,”
Int. J. Med. Robot. Comput.
,
1
(
2
), pp.
76
85
.10.1002/rcs.18
5.
Wang
,
S.
,
Ding
,
J.
, and
Yun
,
J.
,
2006
, “
A Robotic System for Microsurgery: The “Micro Hand” System
,”
Robot
,
28
(
2
), pp.
130
135.
10.13973/j.cnki.robot.2006.02.008
6.
Ruqi
,
M.
,
2013
,
Development of the Celiac Minimally Invasive Surgery Robotic Executing System and Research on Its Control Algorithm
,
Harbin Institute of Technology
,
China
, pp.
65
67
.
7.
Aolin
,
T.
,
2014
,
Research on the Teleoperation Motion Control Strategy for a Master-Slave Minimally Invasive Surgical Robot
,
Shanghai Jiao Tong University
,
China
, pp.
20
27 (70–90
).
8.
Liu
,
H.
,
Zhang
,
Y.
, and
Zhu
,
S.
,
2015
, “
Novel Inverse Kinematic Approaches for Robot Manipulators With Pieper-Criterion Based Geometry
,”
Int. J. Control. Autom.
,
13
(
5
), pp.
1242
1250
.10.1007/s12555-013-0440-y
9.
Lee
,
H. Y.
, and
Liang
,
C. G.
,
1988
, “
A New Vector Theory for the Analysis of Spatial Mechanisms
,”
Mech. Mach. Theory
,
23
(
3
), pp.
209
217
.10.1016/0094-114X(88)90106-1
10.
Lee
,
H. Y.
, and
Lia Ng
,
C. G.
,
1988
, “
Displacement Analysis of the General Spatial 7-Link 7R Mechanism
,”
Mech. Mach. Theory
,
23
(
3
), pp.
219
226
.10.1016/0094-114X(88)90107-3
11.
Lee
,
H. Y.
, and
Reinholtz
,
C. F.
,
1996
, “
Inverse Kinematics of Serial-Chain Manipulators
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
396
404
.10.1115/1.2826899
12.
Raghavan
,
M.
, and
Roth
,
B.
,
1993
, “
Inverse Kinematics of the General 6R Manipulator and Related Linkages
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
502
508
.10.1115/1.2919218
13.
Liu
,
S.
,
Zhu
,
S.
, and
Wang
,
X.
,
2008
, “
Rea-Time and High-Accurate Inverse Kinematics Algorithm for General 6R Robots Based on Matrix Decomposition
,”
Chin. J. Mech. Eng.
,
44
(
11
), pp.
304
309
.10.3901/JME.2008.11.304
14.
Lv
,
S.
,
Zhang
,
D.
, and
Liu
,
H.
,
2010
, “
Solution of Screw Equation for Inverse Kinematics of 6R Robot Based on Wu's Method
,”
Chin. J. Mech. Eng.
,
46
(
17
), pp.
35
41
.10.3901/JME.2010.17.035
15.
Goldenberg
,
A.
,
Benhabib
,
B.
, and
Fenton
,
R. G.
,
1985
, “
A Complete Generalized Solution to the Inverse Kinematics of Robots
,”
IEEE J. Rob. Autom.
,
1
(
1
), pp.
14
20
.10.1109/JRA.1985.1086995
16.
Angeles
,
J.
,
1985
, “
On the Numerical Solution of the Inverse Kinematic Problem
,”
Int. J. Robot. Res.
,
4
(
2
), pp.
21
37
.10.1177/027836498500400203
17.
Lenarcic
,
J.
,
1984
, “
An Efficient Numerical Approach for Calculating the Inverse Kinematics for Robot Manipulators
,”
Robotica
,
3
(
1
), pp.
21
26
.10.1017/S0263574700001430
18.
Wei
,
Y.
,
Jian
,
S.
,
He
,
S.
, and
Wang
,
Z.
,
2014
, “
General Approach for Inverse Kinematics of nR Robots
,”
Mech. Mach. Theory
,
75
, pp.
97
106
.10.1016/j.mechmachtheory.2014.01.008
19.
Bai
,
L.
,
Yang
,
J.
, and
Chen
,
X.
,
2019
, “
Solving the Time-Varying Inverse Kinematics Problem for the Da Vinci Surgical Robot
,”
Appl. Sci. Basel
,
9
, p.
3
.10.3390/app9030546
20.
Ding
,
J.
,
Wang
,
S.
, and
Yun
,
J.
,
2006
, “
Real-Time Control Algorithm for Tele-Operated Surgery Robot
,”
Chin. J. Mech. Eng.
,
42
(
12
), pp.
163
168
.10.3901/JME.2006.12.163
21.
Jiang
,
Z.
,
Dai
,
Y.
, and
Zhang
,
J.
,
2017
, “
Kinematics Calculation of Minimally Invasive Surgical Robot Based on FPGA
,” IEEE International Conference on Robotics and Biomimetics (
ROBIO
), IEEE, Macau, China, Dec. 5–8, pp.
1726
1730
.10.1109/ROBIO.2017.8324667
22.
Almusawi
,
A. R. J.
,
Dülger
,
L. C.
, and
Kapucu
,
S.
,
2019
, “
Artificial Neural Network Based Kinematics: Case Study on Robotic Surgery
,”
IFToMM World Congress on Mechanism and Machine Science
, Springer, Cham, June 30–July 4, pp.
1839
1848
.10.1007/978-3-030-20131-9_182
23.
Liu
,
Q.
,
Wang
,
C.
, and
Zhang
,
B.
,
2017
, “
Kinematics Analysis and Motion Planning of a Redundant Robotic Manipulator for Surgical Intervention
,” IEEE International Conference on Cyborg and Bionic Systems (
CBS
), IEEE, Beijing, China, Oct. 17–19, pp.
1
6
.10.1109/CBS.2017.8266064
24.
Wang, J., Zhang, D., Ma, T., Song, S., Liu, W., and Meng, M. Q. H
.,
2018
, “
A New Solution for the Inverse Kinematics of Concentric-Tube Robots
,” IEEE International Conference on Cyborg and Bionic Systems (
CBS
), IEEE, Shenzhen, China, Oct. 25–27, pp.
234
239
.10.1109/CBS.2018.8612283
25.
Karlik
,
B.
, and
Aydin
,
S.
,
2000
, “
An Improved Approach to the Solution of Inverse Kinematics Problems for Robot Manipulators
,”
Eng. Appl. Artif. Intel
l.,
13
(
2
), pp.
159
164
.10.1016/S0952-1976(99)00050-0
26.
Huang
,
W.
, and
Tan
,
S.
,
2008
, “
Inverse Kinematics of Compliant Manipulator Based on the Immune Genetic Algorithm
,”
Fourth International Conference on Natural Computation
, Jinan, China, Oct. 18–20, pp.
390
394
.10.1109/ICNC.2008.631
27.
Hang
,
L.
,
Wang
,
Y.
, and
Yang
,
T.
,
2004
, “
Inverse Kinematic Analysis of the General 6R Serial Robot Mechanism Based on Groebner Basis
,”
J. Shanghai Jiao Tong Univ.
,
38
(
6
), pp.
853
856
.10.1007/s11465-005-0022-7
28.
Wang
,
Z.
,
Zi
,
B.
,
Ding
,
H.
,
You
,
W.
, and
Yu
,
L.
,
2018
, “
Hybrid Grey Prediction Model-Based Autotracking Algorithm for the Laparoscopic Visual Window of Surgical Robot
,”
Mech. Mach. Theory
,
123
, pp.
107
123
.10.1016/j.mechmachtheory.2018.01.015
29.
Narayan
,
J.
,
Singla
,
E.
,
Soni
,
S.
, and
Singla
,
A.
,
2018
, “
Adaptive Neuro-Fuzzy Inference System–Based Path Planning of 5-Degrees-of-Freedom Spatial Manipulator for Medical Applications
,”
J. Soc. Mech. Eng., Part H
,
232
, pp.
726
732
.10.1177/0954411918781418
You do not currently have access to this content.