Abstract

Breast cancer is the most prevalent form of cancer in women with over 266,000 new cases diagnosed every year in the United States. The various methods used for breast cancer screening range in accuracy and cost; however, there is no easily reproducible, reliable, low-cost, nonradiative screening modality currently available, especially for dense breast tissue. Steady-state infrared imaging (IRI) is promising in this area as it is unaffected by tissue density and has the potential to detect tumors by measuring and capturing the thermal profile on the breast surface induced by increased blood perfusion and metabolic activity associated with the tumor. In our proposed clinical IRI and simulation approach (CIRIS™), women with biopsy-proven breast cancer are imaged with IRI in the prone position. The prone position is able to provide a thermal profile of the entire breast without any gravitational deformation or thermal abnormalities in the inframammary fold. A digital model, created using clinical images, is thermally simulated through a commercially available software using known tumor characteristics obtained from the available magnetic resonance imaging (MRI) data. The resulting surface thermal profile is compared with the IRI images. In the three cases discussed here, the digital model was able to accurately predict the breast surface temperature distribution, showing the promise of this approach in breast cancer screening. This preliminary work is expected to lead the way for a larger clinical study in the future to establish IRI as an adjunctive screening technique.

References

1.
Hollingsworth
,
A. B.
, and
Stough
,
R. G.
,
2014
, “
An Alternative Approach to Selecting Patients for High-Risk Screening With Breast MRI
,”
Breast J.
,
20
(
2
), pp.
192
197
.10.1111/tbj.12242
2.
Kriege
,
M.
,
Brekelmans
,
C. T. M.
,
Zonderland
,
H. M.
,
Kok
,
T.
, and
Meijer
,
S.
,
2004
, “
Efficacy of MRI and Mammography for Breast-Cancer Screening in Women With a Familial or Genetic Predisposition
,”
New Engl. J. Med.
, p.
11
.10.1111/j.1617-0830.2005.00041.x
3.
Berg
,
W. A.
,
Blume
,
J. D.
,
Adams
,
A. M.
,
Jong
,
R. A.
,
Barr
,
R. G.
,
Lehrer
,
D. E.
,
Pisano
,
E. D.
,
Evans
,
W. P.
,
Mahoney
,
M. C.
,
Hovanessian Larsen
,
L.
,
Gabrielli
,
G. J.
, and
Mendelson
,
E. B.
,
2010
, “
Reasons Women at Elevated Risk of Breast Cancer Refuse Breast MR Imaging Screening: ACRIN 6666
,”
Radiology
,
254
(
1
), pp.
79
87
.10.1148/radiol.2541090953
4.
Center for Drug Evaluation and Research
,
2018
, “
Drug Safety and Availability—FDA Drug Safety Communication: FDA Evaluating the Risk of Brain Deposits With Repeated Use of Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging (MRI)
,” FDA, White Oak, MD, accessed Oct. 17, 2019, https://www.fda.gov/Drugs/DrugSafety/ucm455386.htm
5.
Center for Drug Evaluation and Research
,
2018
, “
Drug Safety and Availability—FDA Drug Safety Communication: FDA Warns That Gadolinium-Based Contrast Agents (GBCAs) Are Retained in the Body; Requires New Class Warnings
,” FDA, White Oak, MD, accessed Oct. 17, 2019, https://www.fda.gov/Drugs/DrugSafety/ucm589213.htm
6.
U.S. National Library of Medicine,
2018
, “
Mammography
,” MedlinePlus, U.S. National Library of Medicine, Bethesda, MD, accessed Jan. 17,
2018
, https://medlineplus.gov/mammography.html
7.
Doheny
,
K.
,
2014
, “
Are Routine Ultrasounds for Women With Dense Breasts Worthwhile?
,” New York, accessed Jan. 18, 2014, https://www.webmd.com/
8.
FLIR Systems
,
2018
, “
FLIR T-Series Thermal Imaging Cameras
,” FLIR Systems, Wilsonville, OR, accessed Jan. 10, 2018, http://www.flir.com/instruments/content/?id=84344
9.
Gonzalez-Hernandez
,
J.-L.
,
Recinella
,
A. N.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2019
, “
Technology, Application and Potential of Dynamic Breast Thermography for the Detection of Breast Cancer
,”
Int. J. Heat Mass Transfer
,
131
, pp.
558
573
.10.1016/j.ijheatmasstransfer.2018.11.089
10.
Pennes
,
H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), p.
93
.10.1152/jappl.1948.1.2.93
11.
Das
,
K.
, and
Mishra
,
S. C.
,
2013
, “
Estimation of Tumor Characteristics in a Breast Tissue With Known Skin Surface Temperature
,”
J. Therm. Biol.
,
38
(
6
), pp.
311
317
.10.1016/j.jtherbio.2013.04.001
12.
Amri
,
A.
,
Pulko
,
S. H.
, and
Wilkinson
,
A. J.
,
2016
, “
Potentialities of Steady-State and Transient Thermography in Breast Tumour Depth Detection: A Numerical Study
,”
Comput. Methods Prog. Biomed.
,
123
, pp.
68
80
.10.1016/j.cmpb.2015.09.014
13.
Osman
,
M. M.
, and
Afify
,
E. M.
,
1984
, “
Thermal Modeling of the Normal Woman's Breast
,”
ASME J. Biomech. Eng
,
106
(
2
), pp.
123
130
.10.1115/1.3138468
14.
Osman
,
M. M.
, and
Afify
,
E. M.
,
1988
, “
Thermal Modeling of the Malignant Woman's Breast
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
269
276
.10.1115/1.3108441
15.
Sudharsan
,
N. M.
,
Ng
,
E. Y. K.
, and
Teh
,
S. L.
,
1999
, “
Surface Temperature Distribution of a Breast With and Without Tumour
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
187
199
.10.1080/10255849908907987
16.
Sudharsan
,
N. M.
, and
Ng
,
E. Y. K.
,
2000
, “
Parametric Optimization for Tumour Identification: Bioheat Equation Using ANOVA and the Taguchi Method
,”
Inst. Mech. Eng., Part H: J. Eng. Med.
,
214
(
5
), pp.
505
512
.10.1243/0954411001535534
17.
González
,
F. J.
,
2007
, “
Thermal Simulation of Breast Tumors
,”
Rev. Mexicana de Física
,
53
(
4
), pp.
323
326
.
18.
Ng
,
E. Y.
, and
Sudharsan
,
N. M.
,
2001
, “
Numerical Computation as a Tool to Aid Thermographic Interpretation
,”
J. Med. Eng. Technol.
,
25
(
2
), pp.
53
60
.
19.
Ng
,
E.-K.
, and
Sudharsan
,
N. M.
,
2001
, “
Effect of Blood Flow, Tumour and Cold Stress in a Female Breast: A Novel Time-Accurate Computer Simulation
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
215
(
4
), pp.
393
404
.10.1243/0954411011535975
20.
Jiang
,
L.
,
Zhan
,
W.
, and
Loew
,
M.
, 2008, “Combined Thermal and Elastic Modeling of the Normal and Tumorous Breast,”
SPIE Proc.
,
6916
, p. 69161E.10.1117/12.772451
21.
Jiang
,
L.
,
Zhan
,
W.
, and
Loew
,
M. H.
,
2011
, “
Modeling Static and Dynamic Thermography of the Human Breast Under Elastic Deformation
,”
Phys. Med. Biol.
,
56
(
1
), p.
187
.10.1088/0031-9155/56/1/012
22.
Bezerra
,
L. A.
,
Oliveira
,
M. M.
,
Rolim
,
T. L.
,
Conci
,
A.
,
Santos
,
F. G. S.
,
Lyra
,
P. R. M.
, and
Lima
,
R. C. F.
,
2013
, “
Estimation of Breast Tumor Thermal Properties Using Infrared Images
,”
Signal Process.
,
93
(
10
), pp.
2851
2863
.10.1016/j.sigpro.2012.06.002
23.
Gonzalez-Hernandez
,
J.-L.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2018
, “
Generation and Thermal Simulation of a Digital Model of the Female Breast in Prone Position
,”
J. Eng. Sci. Med. Diagn. Ther.
,
1
(
4
), p.
041006
.10.1115/1.4041421
24.
Kandlikar
,
S. G.
,
Perez-Raya
,
I.
,
Raghupathi
,
P. A.
,
Gonzalez-Hernandez
,
J.-L.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2017
, “
Infrared Imaging Technology for Breast Cancer Detection—Current Status, Protocols and New Directions
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. B
), pp.
2303
2320
.10.1016/j.ijheatmasstransfer.2017.01.086
25.
Lozano
,
A.
, and
Hassanipour
,
F.
,
2019
, “
Infrared Imaging for Breast Cancer Detection: An Objective Review of Foundational Studies and Its Proper Role in Breast Cancer Screening
,”
Infrared Phys. Technol.
,
97
, pp.
244
257
.10.1016/j.infrared.2018.12.017
26.
Amri
,
A.
,
Wilkinson
,
A. J.
, and
Pulko
,
S. H.
,
2017
, “
Potentialities of Dynamic Breast Thermography
,”
Application of Infrared to Biomedical Sciences
,
E. Y.
Ng
, and
M.
Etehadtavakol
, eds.,
Springer Singapore
,
Singapore
, pp.
79
107
.
27.
Barnes
,
R. B.
,
2006
, “
Thermography
,”
Ann. New York Acad. Sci.
,
121
(
1
), pp.
34
48
.10.1111/j.1749-6632.1964.tb13683.x
28.
Marins
,
J. C. B.
,
2014
, “
Time Required to Stabilize Thermographic Images at Rest
,”
Infrared Phys. Technol.
,
65
, pp.
30
35
.10.1016/j.infrared.2014.02.008
29.
Gautherie
,
M.
,
1980
, “
Thermopathology of Breast Cancer: Measurement and Analysis of In Vivo Temperature and Blood Flow
,”
Ann. New York Acad. Sci.
,
335
(
1
), pp.
383
415
.10.1111/j.1749-6632.1980.tb50764.x
30.
Duck
,
F. A.
,
2013
,
Physical Properties of Tissues: A Comprehensive Reference Book
,
Academic Press
, Cambridge, MA.
31.
Ng
,
E. Y.-K.
,
2009
, “
A Review of Thermography as Promising Non-Invasive Detection Modality for Breast Tumor
,”
Int. J. Therm. Sci.
,
48
(
5
), pp.
849
859
.10.1016/j.ijthermalsci.2008.06.015
32.
Breastcancer.Org
.,
2018
, “
IDC—Invasive Ductal Carcinoma
,” breastcancer.org, Ardmore, PA, accessed Jan. 9, 2018, http://www.breastcancer.org/symptoms/types/idc
33.
National Cancer Institute
,
2018
, “
NCI Dictionary of Cancer Terms
,” National Cancer Institute, Bethesda, MD, accessed Jan. 9, https://www.cancer.gov/publications/dictionaries/cancer-terms
You do not currently have access to this content.