Abstract

Intra-operative medical imaging based on magnetic resonance imaging (MRI) coupled with robotic manipulation of surgical instruments enables precise feedback-driven procedures. Electrically powered nonferromagnetic motors based on piezoelectric elements have shown to be well suited for MRI robots. However, even avoiding ferrous materials, the high metal content on commercially available motors still cause distortions to the magnetic fields. We construct semicustom piezoelectric actuators wherein the quantity of conductive material is minimized and demonstrate that the distortion issues can be partly addressed through substituting several of these components for plastic equivalents, while maintaining motor functionality. Distortion was measured by assessing the root-mean-squared (RMS) change in position of 49 centroid points in a 12.5 mm square grid of a gelatin-filled phantom. The metal motor caused a distortion of up to 4.91 mm versus 0.55 mm for the plastic motor. An additional signal-to-noise-ratio (SNR) drop between motor off and motor spinning of approximately 20% was not statistically different for metal versus plastic (p = 0.36).

References

References
1.
Gerbaulet
,
A.
, and
Gerbaulet
,
A.
,
2002
,
The GEC Estro Handbook of Brachytherapy
, The European Society for Radiotherapy and Oncology, Brussels, Belgium.
2.
MacDonell
,
J.
,
Patel
,
N.
,
Rubino
,
S.
,
Ghoshal
,
G.
,
Fischer
,
G.
,
Burdette
,
E. C.
,
Hwang
,
R.
, and
Pilitsis
,
J. G.
,
2018
, “
Magnetic Resonance–Guided Interstitial High-Intensity Focused Ultrasound for Brain Tumor Ablation
,”
Neurosurg. Focus
,
44
(
2
), p.
E11
.10.3171/2017.11.FOCUS17613
3.
Cleary
,
K.
, and
Peters
,
T. M.
,
2010
, “
Image-Guided Interventions: Technology Review and Clinical Applications
,”
Annu. Rev. Biomed. Eng.
,
12
(
1
), pp.
119
142
.10.1146/annurev-bioeng-070909-105249
4.
May
,
F.
,
Treumann
,
T.
,
Dettmar
,
P.
,
Hartung
,
R.
, and
Breul
,
J.
,
2001
, “
Limited Value of Endorectal Magnetic Resonance Imaging and Transrectal Ultrasonography in the Staging of Clinically Localized Prostate Cancer
,”
BJU Int.
,
87
(
1
), pp.
66
69
.10.1046/j.1464-410x.2001.00018.x
5.
Lehman
,
C. D.
,
Gatsonis
,
C.
,
Kuhl
,
C. K.
,
Hendrick
,
R. E.
,
Pisano
,
E. D.
,
Hanna
,
L.
,
Peacock
,
S.
,
Smazal
,
S. F.
,
Maki
,
D. D.
,
Julian
,
T. B.
,
DePeri
,
E. R.
,
Bluemke
,
D. A.
, and
Schnall
,
M. D.
,
2007
, “
MRI Evaluation of the Contralateral Breast in Women With Recently Diagnosed Breast Cancer
,”
New Engl. J. Med.
,
356
(
13
), pp.
1295
1303
.10.1056/NEJMoa065447
6.
Fütterer
,
J. J.
,
Misra
,
S.
, and
Macura
,
K. J.
,
2010
, “
MRI of the Prostate: Potential Role of Robots
,”
Imaging Med.
,
2
(
5
), p.
583
.10.2217/iim.10.46
7.
Monfaredi
,
R.
,
Cleary
,
K.
, and
Sharma
,
K.
,
2018
, “
MRI Robots for Needle-Based Interventions: Systems and Technology
,”
Ann. Biomed. Eng.
,
46
(
10
), pp.
1479
1497
.10.1007/s10439-018-2075-x
8.
Stoianovici
,
D.
,
Song
,
D.
,
Petrisor
,
D.
,
Ursu
,
D.
,
Mazilu
,
D.
,
Mutener
,
M.
,
Schar
,
M.
, and
Patriciu
,
A.
,
2007
, “
‘MRI Stealth’ Robot for Prostate Interventions
,”
Minimally Invasive Ther. Allied Technol.
,
16
(
4
), pp.
241
248
.10.1080/13645700701520735
9.
Stoianovici
,
D.
,
Kim
,
C.
,
Srimathveeravalli
,
G.
,
Sebrecht
,
P.
,
Petrisor
,
D.
,
Coleman
,
J.
,
Solomon
,
S. B.
, and
Hricak
,
H.
,
2013
, “
MRI-Safe Robot for Endorectal Prostate Biopsy
,”
IEEE/ASME Trans. Mechatronics
,
19
(
4
), pp.
1289
1299
.10.1109/TMECH.2013.2279775
10.
Fischer
,
G. S.
,
Iordachita
,
I.
,
Csoma
,
C.
,
Tokuda
,
J.
,
DiMaio
,
S. P.
,
Tempany
,
C. M.
,
Hata
,
N.
, and
Fichtinger
,
G.
,
2008
, “
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement
,”
IEEE/ASME Trans. Mechatronics
,
13
(
3
), pp.
295
305
.10.1109/TMECH.2008.924044
11.
Yakar
,
D.
,
Schouten
,
M. G.
,
Bosboom
,
D. G.
,
Barentsz
,
J. O.
,
Scheenen
,
T. W.
, and
Fütterer
,
J. J.
,
2011
, “
Feasibility of a Pneumatically Actuated MR-Compatible Robot for Transrectal Prostate Biopsy Guidance
,”
Radiology
,
260
(
1
), pp.
241
247
.10.1148/radiol.11101106
12.
Yang
,
B.
,
Tan
,
U.-X.
,
McMillan
,
A. B.
,
Gullapalli
,
R.
, and
Desai
,
J. P.
,
2011
, “
Design and Control of a 1-DOF MRI-Compatible Pneumatically Actuated Robot With Long Transmission Lines
,”
IEEE/ASME Trans. Mechatronics
,
16
(
6
), pp.
1040
1048
.10.1109/TMECH.2010.2071393
13.
Kokes
,
R.
,
Lister
,
K.
,
Gullapalli
,
R.
,
Zhang
,
B.
,
MacMillan
,
A.
,
Richard
,
H.
, and
Desai
,
J. P.
,
2009
, “
Towards a Teleoperated Needle Driver Robot With Haptic Feedback for RFA of Breast Tumors Under Continuous MRI
,”
Med. Image Anal.
,
13
(
3
), pp.
445
455
.10.1016/j.media.2009.02.001
14.
Lee
,
K. H.
,
Fu
,
K.-C. D.
,
Guo
,
Z.
,
Dong
,
Z.
,
Leong
,
M. C. W.
,
Cheung
,
C.
,
Lee
,
P. W. A.
,
Luk
,
W.
, and
Kwok
,
K.-W.
,
2018
, “
MR Safe Robotic Manipulator for MRI-Guided Intra-Cardiac Catheterization
,”
IEEE/ASME Trans. Mechatronics
,
23
(
2
), pp.
586
595
.10.1109/TMECH.2018.2801787
15.
Masamune
,
K.
,
Kobayashi
,
E.
,
Masutani
,
Y.
,
Suzuki
,
M.
,
Dohi
,
T.
,
Iseki
,
H.
, and
Takakura
,
K.
,
1995
, “
Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery
,”
J. Image Guided Surg.
,
1
(
4
), pp.
242
248
.10.1002/(SICI)1522-712X(1995)1:4<242::AID-IGS7>3.0.CO;2-A
16.
Patel
,
N. A.
,
van Katwijk
,
T.
,
Li
,
G.
,
Moreira
,
P.
,
Shang
,
W.
,
Misra
,
S.
, and
Fischer
,
G. S.
,
2015
, “
Closed-Loop Asymmetric-Tip Needle Steering Under Continuous Intraoperative MRI Guidance
,” 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Milano, Italy, Aug. 25–29, pp.
4869
4874
.10.1109/EMBC.2015.7319484
17.
Nycz
,
C. J.
,
Gondokaryono
,
R.
,
Carvalho
,
P.
,
Patel
,
N.
,
Wartenberg
,
M.
,
Pilitsis
,
J. G.
, and
Fischer
,
G. S.
,
2017
, “
Mechanical Validation of an MRI Compatible Stereotactic Neurosurgery Robot in Preparation for Pre-Clinical Trials
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Vancouver, Canada
,
Sept. 24–28
, pp.
1677
1684
.10.1109/IROS.2017.8205979
18.
Seifabadi
,
R.
,
Song
,
S.-E.
,
Krieger
,
A.
,
Cho
,
N. B.
,
Tokuda
,
J.
,
Fichtinger
,
G.
, and
Iordachita
,
I.
,
2012
, “
Robotic System for MRI-Guided Prostate Biopsy: Feasibility of Teleoperated Needle Insertion and Ex Vivo Phantom Study
,”
Int. J. Comput. Assisted Radiol. Surg.
,
7
(
2
), pp.
181
190
.10.1007/s11548-011-0598-9
19.
Li
,
M.
,
Gonenc
,
B.
,
Kim
,
K.
,
Shang
,
W.
, and
Iordachita
,
I.
,
2015
, “
Development of an MRI-Compatible Needle Driver for In-Bore Prostate Biopsy
,” International Conference on Advanced Robotics (
ICAR
), Istanbul, Turkey, July 27–31, pp.
130
136
.10.1109/ICAR.2015.7251445
20.
Uchino
,
K.
,
1996
,
Piezoelectric Actuators and Ultrasonic Motors
, Vol.
1
,
Springer Science & Business Media
,
Norwell, MA
.
21.
Stoianovici
,
D.
,
Jun
,
C.
,
Lim
,
S.
,
Li
,
P.
,
Petrisor
,
D.
,
Fricke
,
S.
,
Sharma
,
K.
, and
Cleary
,
K.
,
2018
, “
Multi-Imager Compatible, MR Safe, Remote Center of Motion Needle-Guide Robot
,”
IEEE Trans. Biomed. Eng.
,
65
(
1
), pp.
165
177
.10.1109/TBME.2017.2697766
22.
National Electrical Manufacturers Association.,
2001
, “
Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging
,” National Electrical Manufacturers Association, Rosslyn, VA, Standard No. NEMA MS 1–2001.
You do not currently have access to this content.