Abstract

This paper presents an approach for real-time estimation of the systemic vascular resistance (SVR) of heart failure patients who have a left ventricular assist device (LVAD). Notably, an approach is described that relies only on sensing that is built into the LVAD, so no additional sensors or measurements are required. The estimation of SVR is accomplished using a variant of the extended Kalman filter (EKF) algorithm, making use of a reduced-order systemic circulation model, and requires LVAD flowrate as an input to the systemic circulation and measurement of the LVAD differential pressure. Experiments using a hybrid mock circulatory loop (hMCL) are used to show the efficacy of this approach for both types of LVAD pumping modalities; i.e., continuous flow (CF) turbomachines and pulsatile flow (PF) positive-displacement pumps. The mock loop uses a real-time hardware-in-the-loop simulation of the cardiovascular system (CVS) where physiological parameters and particularly the SVR can be set to known values, allowing a basis for evaluating the accuracy of the estimation algorithms. It was found that SVR value estimates were accurate within 1.3% and 0.7% compared to the set model values for the continuous and PF LVADs, respectively. The use of this SVR estimation approach utilizing built-in LVAD sensing technology has potential for use in further real-time estimation endeavors, monitoring of patient physiology, and providing alerts to physicians.

References

1.
Prinzing
,
A.
,
Herold
,
U.
,
Berkefeld
,
A.
,
Krane
,
M.
,
Lange
,
R.
, and
Voss
,
B.
,
2016
, “
Left Ventricular Assist Devices—Current State and Perspectives
,”
J. Thorac. Dis.
,
8
(
8
), pp.
E660
E666
.10.21037/jtd.2016.07.13
2.
Briasoulis
,
A.
,
Inampudi
,
C.
,
Akintoye
,
E.
,
Adegbala
,
O.
,
Alvarez
,
P.
, and
Bhama
,
J.
,
2018
, “
Trends in Utilization, Mortality, Major Complications, and Cost After Left Ventricular Assist Device Implantation in the United States (2009 to 2014)
,”
Am. J. Cardiol.
,
121
(
10
), pp.
1214
1218
.10.1016/j.amjcard.2018.01.041
3.
Rogers
,
J. G.
,
Pagani
,
F. D.
,
Tatooles
,
A. J.
,
Bhat
,
G.
,
Slaughter
,
M. S.
,
Birks
,
E. J.
,
Boyce
,
S. W.
,
Najjar
,
S. S.
,
Jeevanandam
,
V.
,
Anderson
,
A. S.
,
Gregoric
,
I. D.
,
Mallidi
,
H.
,
Leadley
,
K.
,
Aaronson
,
K. D.
,
Frazier
,
O.
, and
Milano
,
C. A.
,
2017
, “
Intrapericardial Left Ventricular Assist Device for Advanced Heart Failure
,”
New Engl. J. Med.
,
376
(
5
), pp.
451
460
.10.1056/NEJMoa1602954
4.
Mehra
,
M. R.
,
Goldstein
,
D. J.
,
Uriel
,
N.
,
Cleveland
,
J. C.
,
Yuzefpolskaya
,
M.
,
Salerno
,
C.
,
Walsh
,
M. N.
,
Milano
,
C. A.
,
Patel
,
C. B.
,
Ewald
,
G. A.
,
Itoh
,
A.
,
Dean
,
D.
,
Krishnamoorthy
,
A.
,
Cotts
,
W. G.
,
Tatooles
,
A. J.
,
Jorde
,
U. P.
,
Bruckner
,
B. A.
,
Estep
,
J. D.
,
Jeevanandam
,
V.
,
Sayer
,
G.
,
HorsTManshof
,
D.
,
Long
,
J. W.
,
Gulati
,
S.
,
Skipper
,
E. R.
,
O'Connell
,
J. B.
,
Heatley
,
G.
,
Sood
,
P.
, and
Naka
,
Y.
,
2018
, “
Two-Year Outcomes With a Magnetically Levitated Cardiac Pump in Heart Failure
,”
New Engl. J. Med.
,
378
(
15
), pp.
1386
1395
.10.1056/NEJMoa1800866
5.
Gohean
,
J. R.
,
Larson
,
E. R.
,
Hsi
,
B. H.
,
Kurusz
,
M.
,
Smalling
,
R. W.
, and
Longoria
,
R. G.
,
2017
, “
Scaling the Low-Shear Pulsatile Torvad for Pediatric Heart Failure
,”
ASAIO J.
,
63
(
2
), pp.
198
206
.10.1097/MAT.0000000000000460
6.
Bartoli
,
C. R.
,
Hennessy-Strahs
,
S.
,
Gohean
,
J.
,
Villeda
,
M.
,
Larson
,
E.
,
Longoria
,
R.
,
Kurusz
,
M.
,
Acker
,
M.
, and
Smalling
,
R.
,
2018
, “
A Novel Toroidal-Flow Left Ventricular Assist Device Minimizes Blood Trauma: Implications of Improved Ventricular Assist Device Hemocompatibility
,”
Ann. Thorac. Surg.
,
107
(
6
), pp.
1761
1767
.10.1016/j.athoracsur.2018.11.053
7.
Zayat
,
R.
,
Moza
,
A.
,
Grottke
,
O.
,
Grzanna
,
T.
,
Fechter
,
T.
,
Motomura
,
T.
,
Schmidt-Mewes
,
C.
,
Breuer
,
T.
,
Autschbach
,
R.
,
Rossaint
,
R.
,
Goetzenich
,
A.
, and
Bleilevens
,
C.
,
2019
, “
In Vitro Comparison of the Hemocompatibility of Two Centrifugal Left Ventricular Assist Devices
,”
J. Thorac. Cardiovasc. Surg.
,
157
(
2
), pp.
591
599
.10.1016/j.jtcvs.2018.07.085
8.
Pauls
,
J. P.
,
Stevens
,
M. C.
,
Bartnikowski
,
N.
,
Fraser
,
J. F.
,
Gregory
,
S. D.
, and
Tansley
,
G.
,
2016
, “
Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study
,”
Ann. Biomed. Eng.
,
44
(
8
), pp.
2377
2387
.10.1007/s10439-016-1552-3
9.
Tchantchaleishvili
,
V.
,
Luc
,
J. G. Y.
,
Cohan
,
C. M.
,
Phan
,
K.
,
Hübbert
,
L.
,
Day
,
S. W.
, and
Massey
,
H. T.
,
2017
, “
Clinical Implications of Physiologic Flow adjusTMent in Continuous-Flow Left Ventricular Assist Devices
,”
ASAIO J.
,
63
(
3
), pp.
241
250
.10.1097/MAT.0000000000000477
10.
Ganz
,
W.
,
Donoso
,
R.
,
Marcus
,
H. S.
,
Forrester
,
J. S.
, and
Swan
,
H. J.
,
1971
, “
A New Technique for Measurement of Cardiac Output by Thermodilution in Man
,”
Am. J. Cardiol.
,
27
(
4
), pp.
392
396
.10.1016/0002-9149(71)90436-X
11.
Stefadouros
,
M. A.
,
Dougherty
,
M. J.
,
Grossman
,
W.
, and
Craige
,
E.
,
1973
, “
Determination of Systemic Vascular Resistance by a Noninvasive Technic
,”
Circulation
,
47
(
1
), pp.
101
107
.10.1161/01.CIR.47.1.101
12.
O'Dwyer
,
J.
,
King
,
J.
,
Wood
,
C.
,
Taylor
,
B.
, and
Smith
,
G.
,
1994
, “
Continuous Measurement of Systemic Vascular Resistance
,”
Anaesthesia
,
49
, pp.
587
590
.10.1111/j.1365-2044.1994.tb14225.x
13.
Lee
,
Q. Y.
,
Redmond
,
S. J.
,
Chan
,
G. S.
,
Middleton
,
P. M.
,
Steel
,
E.
,
Malouf
,
P.
,
Critoph
,
C.
,
Flynn
,
G.
,
O'Lone
,
E.
, and
Lovell
,
N. H.
,
2013
, “
Estimation of Cardiac Output and Systemic Vascular Resistance Using a Multivariate Regression Model With Features Selected From the Finger Photoplethysmogram and Routine Cardiovascular Measurements
,”
BioMedical Eng. OnLine
,
12
(
1
), p.
19
.10.1186/1475-925X-12-19
14.
Wang
,
L.
,
Ansari
,
S.
,
Najarian
,
K.
,
Ward
,
K. R.
, and
Oldham
,
K. R.
,
2017
, “
Estimation of Peripheral Artery Radius Using Non-Invasive Sensors and Kalman Filtering of Local Dynamics
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp.
807
812
.10.23919/ACC.2017.7963052
15.
Tasch
,
U.
,
Koontz
,
J. W.
,
Ignatoski
,
M. A.
, and
Geselowitz
,
D. B.
,
1990
, “
An Adaptive Aortic Pressure Observer for the Penn State Electric Ventricular Assist Device
,”
IEEE Trans. Biomed. Eng.
,
37
(
4
), pp.
374
383
.10.1109/10.52344
16.
Yu
,
Y.-C.
,
Boston
,
J. R.
,
Simaan
,
M. A.
, and
Antaki
,
J. F.
,
2001
, “
Minimally Invasive Estimation of Systemic Vascular Parameters
,”
Ann. Biomed. Eng.
,
29
(
7
), pp.
595
606
.10.1114/1.1380420
17.
Gelb
,
A.
,
1974
,
Applied Optimal Estimation
,
The MIT Press
, Cambridge, MA.
18.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
19.
Baram
,
Y.
, and
Kailath
,
T.
,
1988
, “
Estimability and Regulability of Linear Systems
,”
IEEE Trans. Autom. Control
,
33
(
12
), pp.
1116
1121
.10.1109/9.14433
20.
Maybeck
,
P. S.
,
1979
,
Stochastic Models, Estimation, and Control
,
Academic Press
,
New York
.
21.
Rosenberg
,
G.
,
Phillips
,
W.
,
Landis
,
D.
, and
Pierce
,
W.
,
1981
, “
Design and Evaluation of the Pennsylvania State University Mock Circulatory System
,”
ASAIO J.
,
4
(
2
)1, pp.
41
49
.
22.
Woodard
,
J.
,
M. Rock
,
S.
, and
M. Portner
,
P.
,
1991
, “
A Sophisticated Electromechanical Ventricular Simulator for Ventricular Assist System Testing
,”
ASAIO Trans./Am. Soc. Artif. Internal Organs
,
37
(
7
), pp.
M210
M211
.https://journals.lww.com/asaiojournal/Abstract/1991/07000/A_Sophisticated_Electromechanical_Ventricular.46.aspx
23.
Ferrari
,
G.
,
Kozarski
,
M.
,
Lazzari
,
C. D.
,
Clemente
,
F.
,
Merolli
,
M.
,
Tosti
,
G.
,
Guaragno
,
M.
,
Mimmo
,
R.
,
Ambrosi
,
D.
, and
Głapinski
,
J.
,
2001
, “
A Hybrid (Numerical-Physical) Model of the Left Ventricle
,”
Int. J. Artif. Organs
,
24
(
7
), pp.
456
462
.10.1177/039139880102400705
24.
Kozarski
,
M.
,
Ferrari
,
G.
,
Zieliński
,
K.
,
Górczyńska
,
K.
,
Pałko
,
K.
,
Fresiello
,
L.
,
Di Molfetta
,
A.
, and
Darowski
,
M.
,
2012
, “
A Hybrid (Hydro-Numerical) Cardiovascular Model: Application to Investigate Continuous-Flow Pump Assistance Effect
,”
Biocybern. Biomed. Eng.
,
32
(
4
), pp.
77
91
.10.1016/S0208-5216(12)70051-7
25.
Ochsner
,
G.
,
Amacher
,
R.
,
Amstutz
,
A.
,
Plass
,
A.
,
Schmid Daners
,
M.
,
Tevaearai
,
H.
,
Vandenberghe
,
S.
,
Wilhelm
,
M. J.
, and
Guzzella
,
L. A.
,
2013
, “
Novel Interface for Hybrid Mock Circulations to Evaluate Ventricular Assist Devices
,”
IEEE Trans. Biomed. Eng.
,
60
(
2
), pp.
507
516
.10.1109/TBME.2012.2230000
26.
Farrar
,
D. J.
,
Bourque
,
K.
,
Dague
,
C. P.
,
Cotter
,
C. J.
, and
Poirier
,
V. L.
,
2007
, “
Design Features, Developmental Status, and Experimental Results With the Heartmate III Centrifugal Left Ventricular Assist System With a Magnetically Levitated Rotor
,”
ASAIO J.
,
53
(
3
), pp.
310
315
.10.1097/MAT.0b013e3180536694
27.
LaRose
,
J. A.
,
Tamez
,
D.
,
Ashenuga
,
M.
, and
Reyes
,
C.
,
2010
, “
Design Concepts and Principle of Operation of the Heartware Ventricular Assist System
,”
ASAIO J.
,
56
(
4
), pp.
285
289
.10.1097/MAT.0b013e3181dfbab5
28.
Kitamura
,
T.
,
Matsushima
,
Y.
,
Tokuyama
,
T.
,
Kono
,
S.
,
Nishimura
,
K.
,
Komeda
,
M.
,
Yanai
,
M.
,
Kijima
,
T.
, and
Nojiri
,
C.
,
2000
, “
Physical Model-Based Indirect Measurements of Blood Pressure and Flow Using a Centrifugal Pump
,”
Artif. Organs
,
24
(
8
), pp.
589
593
.10.1046/j.1525-1594.2000.06605.x
29.
LaRose
,
J. A.
, and
Singh
,
U.
,
2013
, “
Sensorless Flow Estimation for Implanted Ventricle Assist Device
,” U.S. Patent No. 8,506,470 B2.
30.
Paynter
,
H. M.
, and
Longoria
,
R.
,
1997
, “
Two-Port Canonical Bond Graph Models of Lossy Power Transduction
,”
IEEE
International Conference on Systems, Man, and Cybernetics
, Orlando, FL, Oct. 12–15, pp.
1533
1537
. 10.1109/ICSMC.1997.638212
31.
Gohean
,
J. R.
,
George
,
M. J.
,
Pate
,
T. D.
,
Kurusz
,
M.
,
Longoria
,
R. G.
, and
Smalling
,
R. W.
,
2013
, “
Verification of a Computational Cardiovascular System Model Comparing the Hemodynamics of a Continuous Flow to a Synchronous Valveless Pulsatile Flow Left Ventricular Assist Device
,”
ASAIO J.
,
59
(
2
), pp.
107
116
.10.1097/MAT.0b013e31827db6d4
32.
Gohean
,
J. R.
,
George
,
M. J.
,
Chang
,
K.-W.
,
Larson
,
E. R.
,
Pate
,
T. D.
,
Kurusz
,
M.
,
Longoria
,
R. G.
, and
Smalling
,
R. W.
,
2014
, “
Preservation of Native Aortic Valve Flow and Full Hemodynamic Support With the TORVAD Using a Computational Model of the Cardiovascular System
,”
ASAIO J. (Am. Soc. Artif. Internal Organs: 1992)
,
59
, pp.
259
265
.10.1097/MAT.0000000000000190
33.
Gohean
,
J. R.
,
2019
, “
Heirarchical Control of a Two-Piston Toroidal Blood Pump
,”
Ph.D. thesis
,
University of Texas at Austin
, Austin, TX.https://repositories.lib.utexas.edu/handle/2152/75029
34.
Yu
,
Y.-C.
,
1998
, “
Minimally Invasive Estimation of Cardiovascular Parameters
,” Ph.D. thesis,
University of Pittsburgh
, Pittsburgh, PA.
You do not currently have access to this content.