Abstract

Validation of computational models using in vitro phantoms is a nontrivial task, especially in the replication of the mechanical properties of the vessel walls, which varies with age and pathophysiological state. In this paper, we present a novel aortic phantom reconstructed from patient-specific data with variable wall compliance that can be tuned without recreating the phantom. The three-dimensional (3D) geometry of an aortic arch was retrieved from a computed tomography angiography scan. A rubber-like silicone phantom was manufactured and connected to a compliance chamber in order to tune its compliance. A lumped resistance was also coupled with the system. The compliance of the aortic arch model was validated using the Young's modulus and characterized further with respect to clinically relevant indicators. The silicone model demonstrates that compliance can be finely tuned with this system under pulsatile flow conditions. The phantom replicated values of compliance in the physiological range. Both, the pressure curves and the asymmetrical behavior of the expansion, are in agreement with the literature. This novel design approach allows obtaining for the first time a phantom with tunable compliance. Vascular phantoms designed and developed with the methodology proposed in this paper have high potential to be used in diverse conditions. Applications include training of physicians, pre-operative trials for complex interventions, testing of medical devices for cardiovascular diseases (CVDs), and comparative Magnetic-resonance-imaging (MRI)-based computational studies.

References

References
1.
Mozaffarian
,
D.
,
Benjamin
,
E. J.
,
Go
,
A. S.
,
Arnett
,
D. K.
,
Blaha
,
M. J.
,
Cushman
,
M.
,
Das
,
S. R.
,
de Ferranti
,
S.
,
Després
,
J.-P.
,
Fullerton
,
H. J.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Liu
,
S.
,
Mackey
,
R. H.
,
Magid
,
D. J.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
, III
,
Moy
,
C. S.
,
Muntner
,
P.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Rodriguez
,
C. J.
,
Rosamond
,
W.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Woo
,
D.
,
Yeh
,
R. W.
, and
Turner
,
M. B.
,
2016
, “
Heart Disease and Stroke Statistics-2016 Update a Report From the
,”
Am. Heart Assoc. Circulation.
,
133
(
4
), pp.
e38
e48
.10.1161/CIR.0000000000000350
2.
Wilkins
,
E.
,
Wilson
,
L.
,
Wickramasinghe
,
K.
,
Bhatnagar
,
P.
,
Leal
,
J.
,
Luengo-Fernandez
,
R.
,
Burns
,
R.
,
Rayner
,
M.
, and
Townsend
,
N.
,
2017
, “
European Cardiovascular Disease Statistics 2017
,” European Heart Network, Brussels, Belgium.
3.
OECD
,
2015
, “
Life Expectancy at Birth,” Health at a Glance 2015
, Vol.
2013
,
OECD Publishing
,
Paris, France
.
4.
Knight
,
A.
,
2011
, “
Weighing the Costs and Benefits of Animal Experiments
,” Eighth World Congress Alternatives to Animal Experimentation, Montreal, Canada, Aug. 21–25, pp.
289
294
.
5.
P. Puska
,
B.
Norrving, and Mendis, S., Eds.,
2011
,
Global Atlas on Cardiovascular Disease Prevention and Control
,
World Health Organization/World Heart Federation/World Stroke Organization
,
Geneva, Switzerland
.
6.
Gatehouse
,
P. D.
,
Keegan
,
J.
,
Crowe
,
L. A.
,
Masood
,
S.
,
Mohiaddin
,
R. H.
,
Kreitner
,
K. F.
, and
Firmin
,
D. N.
,
2005
, “
Applications of Phase-Contrast Flow and Velocity Imaging in Cardiovascular MRI
,”
Eur. Radiol.
,
15
(
10
), pp.
2172
2184
.10.1007/s00330-005-2829-3
7.
Hoi
,
Y.
,
Woodward
,
S. H.
,
Kim
,
M.
,
Taulbee
,
D. B.
, and
Meng
,
H.
,
2006
, “
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
844
851
.10.1115/1.2354209
8.
Morris
,
P. D.
,
Narracott
,
A.
,
von Tengg-Kobligk
,
H.
,
Soto
,
D. A. S.
,
Hsiao
,
S.
,
Lungu
,
A.
,
Evans
,
P.
,
Bressloff
,
N. W.
,
Lawford
,
P. W.
,
Rodney Hose
,
D.
, and
Gunn
,
J. P.
,
2016
, “
Computational Fluid Dynamics Modelling in Cardiovascular Medicine
,”
Heart
,
102
(
1
), pp.
18
28
.10.1136/heartjnl-2015-308044
9.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
,
2009
, “
Patient-Specific Modelling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
109
134
.10.1146/annurev.bioeng.10.061807.160521
10.
Kung
,
E. O.
,
Les
,
A. S.
,
Figueroa
,
C. A.
,
Medina
,
F.
,
Arcaute
,
K.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1947
1960
.10.1007/s10439-011-0284-7
11.
Hessenthaler
,
A.
,
Gaddum
,
N. R.
,
Holub
,
O.
,
Sinkus
,
R.
,
Röhrle
,
O.
, and
Nordsletten
,
D.
,
2017
, “
Experiment for Validation of Fluid‐Structure Interaction Models and Algorithms
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
9
), p.
e2848
.10.1002/cnm.2848
12.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Fontana
,
G. P.
,
Makkar
,
R. R.
,
Brown
,
D. L.
,
Block
,
P. C.
,
Guyton
,
R. A.
,
Pichard
,
A. D.
,
Bavaria
,
J. E.
,
Herrmann
,
H. C.
,
Douglas
,
P. S.
,
Petersen
,
J. L.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Wang
,
D.
, and
Pocock
,
S.
,
2010
, “
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
New Engl. J. Med.
,
363
(
17
), pp.
1597
1607
.10.1056/NEJMoa1008232
13.
Palombi
,
A.
,
Bosi
,
G. M.
,
Di Giuseppe
,
S.
,
De Momi
,
E.
,
Homer-Vanniasinkam
,
S.
,
Burriesci
,
G.
, and
Wurdemann
,
H. A.
,
2019
, “
Sizing the Aortic Annulus With a Robotised, Commercially Available Soft Balloon Catheter: In Vitro Study on Idealised Phantoms
,”
IEEE International Conference on Robotics and Automation
, Montreal, Canada, pp. 6230–6236.
14.
Serruys
,
P. W.
,
De Jaegere
,
P.
,
Kiemeneij
,
F.
,
Macaya
,
C.
,
Rutsch
,
W.
,
Heyndrickx
,
G.
,
Emanuelsson
,
H. U.
,
Marco
,
J.
,
Legrand
,
V. M. G.
,
Materne
,
P. H.
,
Belardi
,
J. A.
,
Sigwart
,
U.
,
Colombo
,
A.
,
Goy
,
J.-J.
,
van den Heuvel
,
P.
,
Delcan
,
J.
,
Morel
,
M.-A. M.
, and
Belardi
,
J.
,
1994
, “
A Comparison of Balloon-Expandable-Stent Implantation With Balloon Angioplasty in Patients With Coronary Artery Disease
,”
New Engl. J. Med.
,
331
(
8
), pp.
489
495
.10.1056/NEJM199408253310801
15.
Pasta
,
S.
,
Scardulla
,
F.
,
Rinaudo
,
A.
,
Raffa
,
G. M.
,
D'ancona
,
G.
,
Pilato
,
M.
, and
Scardulla
,
C.
,
2016
, “
An In Vitro Phantom Study on the Role of the Bird-Beak Configuration in Endograft Infolding in the Aortic Arch
,”
J. Endovascular Ther.
,
23
(
1
), pp.
172
181
.10.1177/1526602815611888
16.
Murai
,
E. H.
,
Homer-Vanniasinkam
,
S.
,
Silveira
,
P. G.
,
Dai
,
J. S.
,
Martins
,
D.
, and
Wurdemann
,
H. A.
,
2018
, “
Towards a Modular Suturing Catheter for Minimally Invasive Vascular Surgery
,”
IEEE International Conference on Robotics and Automation
, Brisbane, Australia, May 21–25, pp.
44
49
.
17.
Neragi-Miandoab
,
S.
, and
Michler
,
R. E.
,
2013
, “
A Review of Most Relevant Complications of Transcatheter Aortic Valve Implantation
,”
ISRN Cardiol.
,
2013
, pp.
1
12
.10.1155/2013/956252
18.
van Gameren
,
M.
,
Witsenburg
,
M.
,
Takkenberg
,
J. J. M.
,
Boshoff
,
D.
,
Mertens
,
L.
,
van Oort
,
A. M.
,
de Wolf
,
D.
,
Freund
,
M.
,
Sreeram
,
N.
,
Bokenkamp
,
R.
,
Talsma
,
M. D.
, and
Gewillig
,
M.
,
2006
, “
Early Complications of Stenting in Patients With Congenital Heart Disease: A Multicentre Study
,”
Eur. Heart J.
,
27
(
22
), pp.
2709
2715
.10.1093/eurheartj/ehl328
19.
Russ
,
C.
,
Gessat
,
M.
,
Szekely
,
G.
, and
Falk
,
V.
,
2012
, “
Rapid Prototyping of Silicone-Based Phantom Models for Stent Simulation Validation
,” MICCAI-Stent, Nice, France, Oct. 1, pp.
80
87
.
20.
Biglino
,
G.
,
Cosentino
,
D.
,
Steeden
,
J. A.
,
De Nova
,
L.
,
Castelli
,
M.
,
Ntsinjana
,
H.
,
Pennati
,
G.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2015
, “
Using 4D Cardiovascular Magnetic Resonance Imaging to Validate Computational Fluid Dynamics: A Case Study
,”
Front. Pediatr.
,
3
(
107
), pp.
1
10
. 10.3389/fped.2015.00107
21.
Vismara
,
R.
,
Pavesi
,
A.
,
Votta
,
E.
,
Taramasso
,
M.
,
Maisano
,
F.
, and
Fiore
,
G. B.
,
2011
, “
A Pulsatile Simulator for the In Vitro Analysis of the Mitral Valve With Tri-Axial Papillary Muscle Displacement
,”
Int. J. Artif. Organs
,
34
(
4
), pp.
383
391
.10.5301/IJAO.2011.7729
22.
Meess
,
K. M.
,
Izzo
,
R. L.
,
Dryjski
,
M. L.
,
Curl
,
R. E.
,
Harris
,
L. M.
,
Springer
,
M.
,
Siddiqui
,
A. H.
,
Rudin
,
S.
, and
Ionita
,
C. N.
,
2017
, “
3D Printed Abdominal Aortic Aneurysm Phantom for Image Guided Surgical Planning With a Patient Specific Fenestrated Endovascular Graft System
,”
International Society for Optics & Photonics Conference Proceedings
, San Francisco, CA, Feb. 11, p.
101380P
.10.1117/12.2253902
23.
Penza
,
V.
,
Ciullo
,
A. S.
,
Moccia
,
S.
,
Mattos
,
L. S.
, and
De Momi
,
E.
,
2018
, “
EndoAbS Dataset: Endoscopic Abdominal Stereo Image Dataset for Benchmarking 3D Stereo Reconstruction Algorithms
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
14
(5), p.
e1926
.10.1002/rcs.1926
24.
Ahamed
,
T.
,
Peattie
,
R. A.
,
Dorfmann
,
L.
, and
Cherry Kemmerling
,
E. M.
,
2018
, “
Pulsatile Flow Measurements and Wall Stress Distribution in a Patient Specific Abdominal Aortic Aneurysm Phantom
,”
ZAMM J. Appl. Math. Mech.
,
98
(
12
), pp.
2258
2274
.10.1002/zamm.201700281
25.
Yazdi
,
S. G.
,
Geoghegan
,
P. H.
,
Docherty
,
P. D.
,
Jermy
,
M.
, and
Khanafer
,
A.
,
2018
, “
A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques
,”
Ann. Biomed. Eng.
,
46
(
11
), pp.
1697
1721
.10.1007/s10439-018-2085-8
26.
Biglino
,
G.
,
Verschueren
,
P.
,
Zegels
,
R.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2013
, “
Rapid Prototyping Compliant Arterial Phantoms for In-Vitro Studies and Device Testing
,”
J. Cardiovasc. Magn. Reson.
,
15
(
1
), p.
2
.10.1186/1532-429X-15-2
27.
Wang
,
Y.
,
Joannic
,
D.
,
Juillion
,
P.
,
Monnet
,
A.
,
Delassus
,
P.
,
Lalande
,
A.
, and
Fontaine
,
J. F.
,
2018
, “
Validation of the Strain Assessment of a Phantom of Abdominal Aortic Aneurysm: Comparison of Results Obtained From Magnetic Resonance Imaging and Stereovision Measurements
,” ASME
J. Biomech. Eng.
,
140
(
3
), p.
031001
.10.1115/1.4038743
28.
Arcaute
,
K.
, and
Wicker
,
R. B.
,
2008
, “
Patient-Specific Compliant Vessel Manufacturing Using Dip-Spin Coating of Rapid Prototyped Moulds
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051008
.10.1115/1.2898839
29.
Kvasnytsia
,
M.
,
Famaey
,
N.
,
Böhm
,
M.
, and
Verhoelst
,
E.
,
2016
, “
Patient Specific Vascular Benchtop Models for Development and Validation of Medical Devices for Minimally Invasive Procedures
,”
J. Med. Rob. Res.
,
1
(
3
), p.
1640008
.10.1142/S2424905X16400080
30.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
,
Bauer
,
C.
,
Jennings
,
D.
,
Fennessy
,
F.
,
Sonka
,
M.
,
Buatti
,
J.
,
Aylward
,
S. R.
,
Miller
,
J. V.
,
Pieper
,
S.
, and
Kikinis
,
R.
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
31.
Wang
,
K.
,
Zhao
,
Y.
,
Chang
,
Y.-H.
,
Qian
,
Z.
,
Zhang
,
C.
,
Wang
,
B.
,
Vannan
,
M. A.
, and
Wang
,
M.-J.
,
2016
, “
Controlling the Mechanical Behavior of Dual-Material 3D Printed Meta-Materials for Patient-Specific Tissue-Mimicking Phantoms
,”
Mater. Des.
,
90
, pp.
704
712
.10.1016/j.matdes.2015.11.022
32.
Baeck
,
K.
,
Lopes
,
P.
,
Verschueren
,
P.
,
Biglino
,
G.
, and
Capelli
,
C.
,
2013
, “
State of the Art in 3D Printing of Compliant Cardiovascular Models: HeartPrint Material Characterization of HeartPrint Models and Comparison With Arterial Tissue Properties
,”
Workshop on New Technologies for Computer/Robot Assisted Surgery
, Verona, Italy, Sept. 11–13, pp.
1
4
.
33.
Vismara
,
R.
,
Laganà
,
K.
,
Migliavacca
,
F.
,
Schievano
,
S.
,
Coats
,
L.
,
Taylor
,
A.
, and
Bonhoeffer
,
P.
,
2009
, “
Experimental Setup to Evaluate the Performance of Percutaneous Pulmonary Valved Stent in Different Outflow Tract Morphologies
,”
Artif. Organs
,
33
(
1
), pp.
46
53
.10.1111/j.1525-1594.2008.00673.x
34.
Baeck
,
K.
,
Lopes
,
P.
, and
Verschueren
,
P.
,
2014
, “
Material Characterization of HeartPrint® Models and Comparison With Arterial Tissue Properties
,” Materialise, Leuven, Belgium.
35.
BS
,
2015
, “
Rubber, Vulcanized or Thermoplastic—Determination of the Effect of Liquids
,”
British Standards Institution
,
London, UK
, Standard No. BS ISO 1817.
36.
Kamenskiy
,
A. V.
,
Dzenis
,
Y. A.
,
Kazmi
,
S. A.
,
Pemberton
,
M. A.
,
Pipinos
,
I. I.
,
Phillips
,
N. Y.
,
Herber
,
K.
,
Woodford
,
T.
,
Bowen
,
R. E.
,
Lomneth
,
C. S.
, and
MacTaggart
,
J. N.
,
2014
, “
Biaxial Mechanical Properties of the Human Thoracic and Abdominal Aorta, Common Carotid, Subclavian, Renal and Common Iliac Arteries
,”
Biomech. Model. Mechanobiol.
,
13
(
6
), pp.
1341
1359
.10.1007/s10237-014-0576-6
37.
Ding
,
H.
,
Qiao
,
A.
,
Shen
,
L.
,
Li
,
M.
,
Chen
,
Z.
,
Yu
,
X.
, and
Zeng
,
Y.
,
2006
, “
Design of Compliance Chamber and After-Load in Apparatus for Cultured Endothelial Cells Subjected to Stresses
,”
Cell Biol. Int.
,
30
(
5
), pp.
439
444
.10.1016/j.cellbi.2006.02.003
38.
Takazawa
,
K.
,
Kobayashi
,
H.
,
Shindo
,
N.
,
Tanaka
,
N.
, and
Yamashina
,
A.
,
2007
, “
Relationship Between Radial and Central Arterial Pulse Wave and Evaluation of Central Aortic Pressure Using the Radial Arterial Pulse Wave
,”
Hypertens. Res.
,
30
(
3
), p.
219
.10.1291/hypres.30.219
39.
He
,
J. L.
,
Lecarpentier
,
Y.
,
Zamani
,
K.
,
Coirault
,
C.
,
Daccache
,
G.
,
Chemla
,
D.
,
Wuilliez
,
N.
, and
Larsonneur
,
L.
,
1995
, “
Relation Between Aortic Dicrotic Notch Pressure and Mean Aortic Pressure in Adults
,”
Am. J. Cardiol.
,
76
(
4
), pp.
301
306
.10.1016/S0002-9149(99)80086-1
40.
Nichols
,
W. W.
,
Denardo
,
S. J.
,
Wilkinson
,
I. B.
,
McEniery
,
C. M.
,
Cockcroft
,
J.
, and
O'rourke
,
M. F.
,
2008
, “
Effects of Arterial Stiffness, Pulse Wave Velocity, and Wave Reflections on the Central Aortic Pressure Waveform
,”
J. Clin. Hypertens.
,
10
(
4
), pp.
295
303
.10.1111/j.1751-7176.2008.04746.x
41.
Van Prehn
,
J.
,
Vincken
,
K. L.
,
Sprinkhuizen
,
S. M.
,
Viergever
,
M. A.
,
Van Keulen
,
J. W.
,
Van Herwaarden
,
J. A.
,
Moll
,
F. L.
, and
Bartels
,
L. W.
,
2009
, “
Aortic Pulsatile Distention in Young Healthy Volunteers Is Asymmetric: Analysis With ECG-Gated MRI
,”
Eur. J. Vasc. Endovascular Surg.
,
37
(
2
), pp.
168
174
.10.1016/j.ejvs.2008.11.007
42.
Voges
,
I.
,
Jerosch-Herold
,
M.
,
Hedderich
,
J.
,
Pardun
,
E.
,
Hart
,
C.
,
Gabbert
,
D. D.
,
Hansen
,
J. H.
,
Petko
,
C.
,
Kramer
,
H. H.
, and
Rickers
,
C.
,
2012
, “
Normal Values of Aortic Dimensions, Distensibility, and Pulse Wave Velocity in Children and Young Adults: A Cross-Sectional Study
,”
J. Cardiovasc. Magn. Reson.
,
14
(
1
), p.
77
.10.1186/1532-429X-14-77
You do not currently have access to this content.