Abstract

Ex vivo systems represent important models to study vascular biology and to test medical devices, combining the advantages of in vitro and in vivo models such as controllability of parameters and the presence of biological response, respectively. The aim of this study was to develop a comprehensive ex vivo vascular bioreactor to long-term culture and study the behavior of native blood vessels under physiologically relevant conditions. The system was designed to allow for physiological mechanical loading in terms of pulsatile hemodynamics, shear stress, and longitudinal prestretch and ultrasound imaging for vessel diameter and morphology evaluation. In this first experience, porcine carotid arteries (n = 4) from slaughterhouse animals were cultured in the platform for 10 days at physiological temperature, CO2 and humidity using medium with blood-mimicking viscosity, components, and stability of composition. As expected, a significant increase in vessel diameter was observed during culture. Flow rate was adjusted according to diameter values to reproduce and maintain physiological shear stress, while pressure was kept physiological. Ultrasound imaging showed that the morphology and structure of cultured arteries were comparable to in vivo. Histological analyses showed preserved endothelium and extracellular matrix and neointimal tissue growth over 10 days of culture. In conclusion, we have developed a comprehensive pulsatile system in which a native blood vessel can be cultured under physiological conditions. The present model represents a significant step toward ex vivo testing of vascular therapies, devices, drug interaction, and as basis for further model developments.

References

1.
Han
,
H. C.
, and
Ku
,
D. N.
,
2001
, “
Contractile Responses in Arteries Subjected to Hypertensive Pressure in Seven-Day Organ Culture
,”
Ann. Biomed. Eng.
,
29
(
6
), pp.
467
475
.10.1114/1.1376391
2.
Conklin
,
B. S.
,
Surowiec
,
S. M.
,
Lin
,
P. H.
, and
Chen
,
C.
,
2000
, “
A Simple Physiologic Pulsatile Perfusion System for the Study of Intact Vascular Tissue
,”
Med. Eng. Phys.
,
22
(
6
), pp.
441
449
.10.1016/S1350-4533(00)00052-7
3.
Kamat
,
N.
,
Nguyen-Ehrenreich
,
K. L. T.
,
Hsu
,
S. H.
,
Ma
,
A. P.
,
Sinn
,
I.
,
Coleman
,
L.
, and
Tai
,
J.
,
2011
, “
Characterization of Vascular Injury Responses to Stent Insertion in an Ex-Vivo Arterial Perfusion Model
,”
J. Vasc. Interv. Radiol.
,
22
(
2
), pp.
193
202
.10.1016/j.jvir.2010.10.006
4.
Mundargi
,
R.
,
Venkataraman
,
D.
,
Kumar
,
S.
,
Mogal
,
V.
,
Ortiz
,
R.
,
Loo
,
J.
,
Venkatraman
,
S.
, and
Steele
,
T.
,
2015
, “
Novel Sensor-Enabled Ex Vivo Bioreactor: A New Approach Towards Physiological Parameters and Porcine Artery Viability
,”
Biomed Res. Int.
,
2015
, p.
1
.10.1155/2015/958170
5.
Bergh
,
N.
,
Ekman
,
M.
,
Ulfhammer
,
E.
,
Andersson
,
M.
,
Karlsson
,
L.
, and
Jern
,
S.
,
2005
, “
A New Biomechanical Perfusion System for Ex Vivo Study of Small Biological Intact Vessels
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1808
1818
.10.1007/s10439-005-8478-5
6.
Maurel
,
B.
,
Sarraf
,
C.
,
Bakir
,
F.
,
Chai
,
F.
,
Maton
,
M.
,
Sobocinski
,
J.
,
Hertault
,
A.
,
Blanchemain
,
N.
,
Haulon
,
S.
, and
Lermusiaux
,
P.
,
2015
, “
A New Hemodynamic Ex Vivo Model for Medical Devices Assessment
,”
Ann. Vasc. Surg.
,
29
(
8
), pp.
1648
1655
.10.1016/j.avsg.2015.06.066
7.
Piola
,
M.
,
Ruiter
,
M.
,
Vismara
,
R.
,
Mastrullo
,
V.
,
Agrifoglio
,
M.
,
Zanobini
,
M.
,
Pesce
,
M.
,
Soncini
,
M.
, and
Fiore
,
G. B.
,
2017
, “
Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
884
897
.10.1007/s10439-016-1747-7
8.
Kural
,
M. H.
,
Dai
,
G.
,
Niklason
,
L. E.
, and
Gui
,
L.
,
2018
, “
An Ex Vivo Vessel Injury Model to Study Remodeling
,”
Cell Transplant.
,
27
(
9
), pp.
1375
1389
.10.1177/0963689718792201
9.
Mironov
,
V.
,
Kasyanov
,
V.
,
McAllister
,
K.
,
Oliver
,
S.
,
Sistino
,
J.
, and
Markwald
,
R.
,
2003
, “
Perfusion Bioreactor for Vascular Tissue Engineering With Capacities for Longitudinal Stretch
,”
J. Craniofac. Surg.
,
14
(
3
), pp.
340
347
.10.1097/00001665-200305000-00012
10.
Diamantouros
,
S. E.
,
Hurtado-Aguilar
,
L. G.
,
Schmitz-Rode
,
T.
,
Mela
,
P.
, and
Jockenhoevel
,
S.
,
2013
, “
Pulsatile Perfusion Bioreactor System for Durability Testing and Compliance Estimation of Tissue Engineered Vascular Grafts
,”
Ann. Biomed. Eng.
,
41
(
9
), pp.
1979
1989
.10.1007/s10439-013-0823-5
11.
Loizou
,
C. P.
,
Pattichis
,
C. S.
,
Member
,
S.
,
Nicolaides
,
A. N.
, and
Pantziaris
,
M.
,
2009
, “
Manual and Automated Media and Intima Thickness Measurements of the Common Carotid Artery
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
56
(
5
), pp.
983
994
.10.1109/TUFFC.2009.1130
12.
Roy
,
S.
,
Silacci
,
P.
, and
Stergiopulos
,
N.
,
2005
, “
Biomechanical Proprieties of Decellularized Porcine Common Carotid Arteries
,”
Am. J. Physiol. Hear. Circ. Physiol.
,
289
(
4
), pp.
H1567
H1576
.10.1152/ajpheart.00564.2004
13.
Van Den Broek
,
C. N.
,
Pullens
,
R. A. A.
,
Frøbert
,
O.
,
Rutten
,
M. C. M.
,
den Hartog
,
W. F.
, and
van de Vosse
,
F. N.
,
2008
, “
Medium With Blood-Analog Mechanical Properties for Cardiovascular Tissue Culturing
,”
Biorheology
,
45
(
6
), pp.
651
661
.10.3233/BIR-2008-0513
14.
Gijsen
,
F. J. H.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
,
32
(
6
), pp.
601
608
.10.1016/S0021-9290(99)00015-9
15.
Boekhoven
,
R. W.
,
Rutten
,
M. C. M.
,
van Sambeek
,
M. R.
,
van de Vosse
,
F. N.
, and
Lopata
,
R. G. P.
,
2014
, “
Echo-Computed Tomography Strain Imaging of Healthy and Diseased Carotid Specimens
,”
Ultrasound Med. Biol.
,
40
(
6
), pp.
1329
1342
.10.1016/j.ultrasmedbio.2013.11.026
16.
Ingram
,
D. L.
, and
Legge
,
K. F.
,
1970
, “
Variations in Deep Body Temperature in the Young Unrestrained Pig Over the 24 Hour Period
,”
J. Physiol.
,
210
(
4
), pp.
989
998
.10.1113/jphysiol.1970.sp009253
17.
Guinea
,
G. V.
,
Atienza
,
J. M.
,
Elices
,
M.
,
Aragoncillo
,
P.
, and
Hayashi
,
K.
,
2005
, “
Thermomechanical Behavior of Human Carotid Arteries in the Passive State
,”
Am. J. Physiol. Circ. Physiol.
,
288
(
6
), pp.
H2940
H2945
.10.1152/ajpheart.01099.2004
18.
Wentzel
,
J. J.
,
Chatzizisis
,
Y. S.
,
Gijsen
,
F. J. H.
,
Giannoglou
,
G. D.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2012
, “
Endothelial Shear Stress in the Evolution of Coronary Atherosclerotic Plaque and Vascular Remodelling: Current Understanding and Remaining Questions
,”
Cardiovasc. Res.
,
96
(
2
), pp.
234
243
.10.1093/cvr/cvs217
19.
Perrée
,
J.
,
van Leeuwen
,
T. G.
,
Kerindongo
,
R.
,
Spaan
,
J. A. E.
, and
van Bavel
,
E.
,
2003
, “
Function and Structure of Pressurized and Perfused Porcine Carotid Arteries
,”
Am. J. Pathol.
,
163
(
5
), pp.
1743
1750
.10.1016/S0002-9440(10)63533-X
20.
Atienza
,
J. M.
,
Guinea
,
G. V.
,
Rojo
,
F. J.
,
Burgos
,
R. J.
,
García-Montero
,
C.
,
Goicolea
,
F. J.
,
Aragoncillo
,
P.
, and
Elices
,
M.
,
2007
, “
The Influence of Pressure and Temperature on the Behavior of the Human Aorta and Carotid Arteries
,”
Rev. Esp. Cardiol.
,
60
(
3
), pp.
259
267
.10.1157/13100277
21.
Tanaka
,
T. T.
, and
Fung
,
Y. C.
,
1974
, “
Elastic and Inelastic Properties of the Canine Aorta and Their Variation Along the Aortic Tree
,”
J. Biomech.
,
7
(
4
), pp.
357
370
.10.1016/0021-9290(74)90031-1
22.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2005
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Investig.
,
85
(
1
), pp.
9
23
.10.1038/labinvest.3700215
23.
Holt
,
C. M.
,
Francis
,
S. E.
,
Newby
,
A. C.
,
Rogers
,
S.
,
Gadsdon
,
P. A.
,
Taylor
,
T.
, and
Angelini
,
G. D.
,
1993
, “
Comparison of Response to Injury in Organ Culture of Human Saphenous Vein and Internal Mammary Artery
,”
Ann. Thorac. Surg.
,
55
(
6
), pp.
1522
1528
.10.1016/0003-4975(93)91103-T
You do not currently have access to this content.