Abstract

Nanofibrillar cellulose as a naturally biocompatible scaffold material is very promising for tissue engineering. It is shear thinning but has the downside of not being degradable in animals, it can only be degraded by cellulase enzymes. In this study, a newly developed bioreactor was used to culture fibroblast spheroids under flow conditions inside nanocellulose hydrogels with and without the presence of cellulase. The aim was to control the tissue size and ideally find a match between degradation and tissue formation within this promising material. Both the concentration of cellulase and the flow rate were varied and their influence on the activity and growth of fibroblast clusters was assessed. Cluster diameters, degradation, metabolic activity, and tissue production increase with higher cellulase concentration, although concentrations above 1 g/l does not have an additional benefit. Flow leads to more viable cells, more proliferation and migration, leading to overall larger tissue constructs compared to static conditions. This is most likely due to the shear thinning effect of flow on cellulose nanofibrils (CNFs) in addition to the increased nutrient supply through perfusion. At a constant cellulase concentration of 1 g/l, a flow of 2 ml/min proved to be optimal for tissue production. Therefore, degradation in combination with flow leads to more effective tissue production in CNF hydrogels, which is a very potent scaffold material for tissue engineering.

References

References
1.
Iqbal
,
N.
,
Khan
,
A. S.
,
Asif
,
A.
,
Yar
,
M.
,
Haycock
,
J. W.
, and
Rehman
,
I. U.
,
2019
, “
Recent Concepts in Biodegradable Polymers for Tissue Engineering Paradigms: A Critical Review
,”
Int. Mater. Rev.
,
64
(
2
), pp.
91
126
.10.1080/09506608.2018.1460943
2.
Salehi-Nik
,
N.
,
Amoabediny
,
G.
,
Pouran
,
B.
,
Tabesh
,
H.
,
Shokrgozar
,
M. A.
,
Haghighipour
,
N.
,
Khatibi
,
N.
,
Anisi
,
F.
,
Mottaghy
,
K.
, and
Zandieh-Doulabi
,
B.
,
2013
, “
Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering
,”
BioMed Res. Int.
,
2013
, p.
762132
.10.1155/2013/762132
3.
Torres-Rendon
,
J. G.
,
Köpf
,
M.
,
Gehlen
,
D.
,
Blaeser
,
A.
,
Fischer
,
H.
,
Laporte
,
L. D.
, and
Walther
,
A.
,
2016
, “
Cellulose Nanofibril Hydrogel Tubes as Sacrificial Templates for Freestanding Tubular Cell Constructs
,”
Biomacromolecules
,
17
(
3
), pp.
905
913
.10.1021/acs.biomac.5b01593
4.
Figallo
,
E.
,
Flaibani
,
M.
,
Zavan
,
B.
,
Abatangelo
,
G.
, and
Elvassore
,
N.
,
2007
, “
Micropatterned Biopolymer 3D Scaffold for Static and Dynamic Culture of Human Fibroblasts
,”
Biotechnol. Prog.
,
23
(
1
), pp.
210
216
.10.1021/bp0602092
5.
Selden
,
C.
, and
Fuller
,
B.
,
2018
, “
Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design
,”
Bioengineering
,
5
(
2
), p.
32
.10.3390/bioengineering5020032
6.
Lawrence
,
B. J.
,
Devarapalli
,
M.
, and
Madihally
,
S. V.
,
2009
, “
Flow Dynamics in Bioreactors Containing Tissue Engineering Scaffolds
,”
Biotechnol. Bioeng.
,
102
(
3
), pp.
935
947
.10.1002/bit.22106
7.
Kannan
,
R. Y.
,
Salacinski
,
H. J.
,
Sales
,
K.
,
Butler
,
P.
, and
Seifalian
,
A. M.
,
2005
, “
The Roles of Tissue Engineering and Vascularisation in the Development of Micro-Vascular Networks: A Review
,”
Biomaterials
,
26
(
14
), pp.
1857
1875
.10.1016/j.biomaterials.2004.07.006
8.
Neumann
,
T.
,
Nicholson
,
B. S.
, and
Sanders
,
J. E.
,
2003
, “
Tissue Engineering of Perfused Microvessels
,”
Microvasc. Res.
,
66
(
1
), pp.
59
67
.10.1016/S0026-2862(03)00040-2
9.
Novosel
,
E. C.
,
Kleinhans
,
C.
, and
Kluger
,
P. J.
,
2011
, “
Vascularization Is the Key Challenge in Tissue Engineering
,”
Adv. Drug Delivery Rev.
,
63
(
4–5
), pp.
300
311
.10.1016/j.addr.2011.03.004
10.
Shoichet
,
M. S.
,
Li
,
R. H.
,
White
,
M. L.
, and
Winn
,
S. R.
,
1996
, “
Stability of Hydrogels Used in Cell Encapsulation: An In Vivo Comparison of Alginate and Agarose
,”
Biotechnol. Bioeng.
,
50
(
4
), pp.
374
381
.10.1002/(SICI)1097-0290(19960520)50:4<374::AID-BIT4>3.0.CO;2-I
11.
Jungst
,
T.
,
Smolan
,
W.
,
Schacht
,
K.
,
Scheibel
,
T.
, and
Groll
,
J.
,
2016
, “
Strategies and Molecular Design Criteria for 3D Printable Hydrogels
,”
Chem. Rev.
,
116
(
3
), pp.
1496
1539
.10.1021/acs.chemrev.5b00303
12.
Li
,
Y.
,
Rodrigues
,
J.
, and
Tomas
,
H.
,
2012
, “
Injectable and Biodegradable Hydrogels: Gelation, Biodegradation and Biomedical Applications
,”
Chem. Soc. Rev.
,
41
(
6
), pp.
2193
2221
.10.1039/C1CS15203C
13.
Benitez
,
A. J.
,
Torres-Rendon
,
J.
,
Poutanen
,
M.
, and
Walther
,
A.
,
2013
, “
Humidity and Multiscale Structure Govern Mechanical Properties and Deformation Modes in Films of Native Cellulose Nanofibrils
,”
Biomacromolecules
,
14
(
12
), pp.
4497
4506
.10.1021/bm401451m
14.
Benitez
,
A. J.
, and
Walther
,
A.
,
2017
, “
Cellulose Nanofibril Nanopapers and Bioinspired Nanocomposites: A Review to Understand the Mechanical Property Space
,”
J. Mater. Chem. A
,
5
(
31
), pp.
16003
160024
.10.1039/C7TA02006F
15.
Torres-Rendon
,
J. G.
,
Femmer
,
T.
,
De Laporte
,
L.
,
Tigges
,
T.
,
Rahimi
,
K.
,
Gremse
,
F.
,
Zafarnia
,
S.
,
Lederle
,
W.
,
Ifuku
,
S.
,
Wessling
,
M.
,
Hardy
,
J. G.
, and
Walther
,
A.
,
2015
, “
Bioactive Gyroid Scaffolds Formed by Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for Biomimetic Tissue Engineering
,”
Adv. Mater.
,
27
, pp.
2898
2995
.10.1002/adma.201405873
16.
Pooyan
,
P.
,
Tannenbaum
,
R.
, and
Garmestani
,
H.
,
2012
, “
Mechanical Behavior of a Cellulose-Reinforced Scaffold in Vascular Tissue Engineering
,”
J. Mech. Behav. Biomed. Mater.
,
7
, pp.
50
59
.10.1016/j.jmbbm.2011.09.009
17.
Hu
,
Y.
, and
Catchmark
,
J. M.
,
2011
, “
Integration of Cellulases Into Bacterial Cellulose: Toward Bioabsorbable Cellulose Composites
,”
J. Biomed. Mater. Res., Part B
,
97
(
1
), pp.
114
123
.10.1002/jbm.b.31792
18.
Bačáková
,
L.
,
Novotná
,
K.
, and
Pařízek
,
M.
,
2014
, “
Polysaccharides as Cell Carriers for Tissue Engineering: The Use of Cellulose in Vascular Wall Reconstruction
,”
Physiol. Res.
,
63
(
Suppl. 1
), pp.
29
47
, https://www.ncbi.nlm.nih.gov/pubmed/24564664
19.
Saito
,
T.
,
Nishiyama
,
Y.
,
Putaux
,
J.-L.
,
Vignon
,
M.
, and
Isogai
,
A.
,
2006
, “
Homogeneous Suspensions of Individualized Microfibrils From TEMPO-Catalyzed Oxidation of Native Cellulose
,”
Biomacromolecules
,
7
(
6
), pp.
1687
1691
.10.1021/bm060154s
20.
Syverud
,
K.
,
Pettersen
,
S. R.
,
Draget
,
K.
, and
Chinga-Carrasco
,
G.
,
2015
, “
Controlling the Elastic Modulus of Cellulose Nanofibril Hydrogels—Scaffolds With Potential in Tissue Engineering
,”
Cellulose
,
22
(
1
), pp.
473
481
.10.1007/s10570-014-0470-5
21.
Bhattacharya
,
M.
,
Malinen
,
M. M.
,
Lauren
,
P.
,
Lou
,
Y.-R.
,
Kuisma
,
S. W.
,
Kanninen
,
L.
,
Lille
,
M.
,
Corlu
,
A.
,
GuGuen-Guillouzo
,
C.
,
Ikkala
,
O.
,
Laukkanen
,
A.
,
Urtti
,
A.
, and
Yliperttula
,
M.
,
2012
, “
Nanofibrillar Cellulose Hydrogel Promotes Three-Dimensional Liver Cell Culture
,”
J. Controlled Release
,
164
(
3
), pp.
291
298
.10.1016/j.jconrel.2012.06.039
22.
Pooyan
,
P.
,
Kim
,
I. T.
,
Jacob
,
K. I.
,
Tannenbaum
,
R.
, and
Garmestani
,
H.
,
2013
, “
Design of a Cellulose-Based Nanocomposite as a Potential Polymeric Scaffold in Tissue Engineering
,”
Polymers
,
54
(
8
), pp.
2105
2114
.10.1016/j.polymer.2013.01.030
23.
Lou
,
Y.-R.
,
Kanninen
,
L.
,
Kuisma
,
T.
,
Niklander
,
J.
,
Noon
,
L. A.
,
Burks
,
D.
,
Urtti
,
A.
, and
Yliperttula
,
M.
,
2014
, “
The Use of Nanofibrillar Cellulose Hydrogel as a Flexible Three-Dimensional Model to Culture Human Pluripotent Stem Cells
,”
Stem Cells Dev.
,
23
(
4
), pp.
380
392
.10.1089/scd.2013.0314
24.
Sannino
,
A.
,
Demitri
,
C.
, and
Madaghiele
,
M.
,
2009
, “
Biodegradable Cellulose-Based Hydrogels: Design and Applications
,”
Materials
,
2
(
2
), pp.
353
373
.10.3390/ma2020353
25.
Polacheck
,
W. J.
,
German
,
A. E.
,
Mammoto
,
A.
,
Ingber
,
D. E.
, and
Kamm
,
R. D.
,
2014
, “
Mechanotransduction of Fluid Stresses Governs 3D Cell Migration
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
7
), pp.
2447
2452
.10.1073/pnas.1316848111
26.
Frank
,
A.
, and
Wiest
,
J.
,
2015
, “
Online, Label-Free Monitoring of Organ-on-a-Chip Models: The Case for Microphysiometry
,”
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
, Milan, Italy, Aug. 25–19, pp.
7091
7094
.
27.
van Duinen
,
V.
,
Trietsch
,
S. J.
,
Joore
,
J.
,
Vulto
,
P.
, and
Hankemeier
,
T.
,
2015
, “
Microfluidic 3D Cell Culture: From Tools to Tissue Models
,”
Curr. Opin. Biotechnol.
,
35
, pp.
118
126
.10.1016/j.copbio.2015.05.002
28.
Ng
,
C. P.
, and
Pun
,
S. H.
,
2008
, “
A Perfusable 3D Cell-Matrix Tissue Culture Chamber for In Situ Evaluation of Nanoparticle Vehicle Penetration and Transport
,”
Biotechnol. Bioeng.
,
99
(
6
), pp.
1490
1501
.10.1002/bit.21698
29.
Gaffey
,
A. C.
,
Chen
,
M. H.
,
Venkataraman
,
C. M.
,
Trubelja
,
A.
,
Rodell
,
C. B.
,
Dinh
,
P. V.
,
Hung
,
G.
,
MacArthur
,
J. W.
,
Soopan
,
R. V.
, and
Burdick
,
J. A.
,
2015
, “
Injectable Shear-Thinning Hydrogels Used to Deliver Endothelial Progenitor Cells, Enhance Cell Engraftment, and Improve Ischemic Myocardium
,”
J. Thorac. Cardiovasc. Surg.
,
150
(
5
), pp.
1268
1277
.10.1016/j.jtcvs.2015.07.035
You do not currently have access to this content.