Human tibia, the second largest bone in human body, is made of complex biological material having inhomogeneity and anisotropy in such a manner that makes it a functionally graded material. While analyses of human tibia assuming it to be made of different material regions have been attempted in past, functionally graded nature of the bone in the mechanical analysis has not been considered. This study highlights the importance of functional grading of material properties in capturing the correct stress distribution from the finite element analysis (FEA) of human tibia under static loading. Isotropic and orthotropic material properties of different regions of human tibia have been graded functionally in three different manners and assigned to the tibia model. The nonfunctionally graded and functionally graded models of tibia have been compared with each other. It was observed that the model in which functional grading was not performed, uneven distribution and unrealistic spikes of stresses occurred at the interfaces of different material regions. On the contrary, the models with functional grading were free from this potential artifact. Hence, our analysis suggests that functional grading is essential for predicting the actual distribution of stresses in the entire bone, which is important for biomechanical analysis. We find that orthotropic nature of the bone tends to increase the maximum von Mises stress in the entire tibia, while inclusion of cross-sectional inhomogeneity typically increases the stresses across normal cross section. Accordingly, our analysis suggests that both orthotropy as well as cross-sectional inhomogeneity should be included to correctly capture the stress distribution in the bone.

References

References
1.
Dempster
,
W. T.
, and
Liddicoat
,
R. T.
,
1952
, “
Compact Bone as a Non-Isotropic Material
,”
Am. J. Anat.
,
91
(
3
), pp.
331
362
.
2.
Vincentelli
,
R.
, and
Evans
,
F. G.
,
1971
, “
Relations Among Mechanical Properties, Collagen Fibers, and Calcification in Adult Human Cortical Bone
,”
J. Biomech.
,
4
(
3
), pp.
193
201
.
3.
Currey
,
J. D.
,
1970
, “
The Mechanical Properties of Bone
,”
Clin. Orthop. Relat. Res.
,
73
, pp.
210
231
.
4.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1974
, “
The Mechanical Properties of Cortical Bone
,”
J. Bone Jt. Surg.
,
56
(
5
), pp.
1001
1022
.
5.
Knets
,
I. V.
,
Saulgozis
,
Y. Z.
, and
Yanson
,
K. A.
,
1975
, “
Deformability and Strength of Compact Bone Tissue During Tensioning
,”
Polym. Mech.
,
10
(
3
), pp.
419
423
.
6.
Pfafrod
,
G. O.
,
Slutskii
,
L. I.
,
Moorlat
,
P. A.
, and
Knets
,
I. V.
,
1977
, “
Evaluation of Some Deformation and Strength Characteristics of Compact Bone Tissue According to the Data of a Biochemical Study
,”
Polym. Mech.
,
12
(
6
), pp.
934
942
.
7.
Lindahl
,
O.
,
1976
, “
Mechanical Properties of Dried Defatted Spongy Bone
,”
Acta Orthop. Scand.
,
47
(
1
), pp.
11
19
.
8.
Williams
,
J. L.
, and
Lewis
,
J. L.
,
1982
, “
Properties and an Anisotropic Model of Cancellous Bone From the Proximal Tibial Epiphysis
,”
ASME J. Biomech. Eng.
,
104
(
1
), p.
50
.
9.
Goldstein
,
S. A.
,
1987
, “
The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function
,”
J. Biomech.
,
20
(
11–12
), pp.
1055
1061
.
10.
Ciarelli
,
M. J.
,
Goldstein
,
S. A.
,
Kuhn
,
J. L.
,
Cody
,
D. D.
, and
Brown
,
M. B.
,
1991
, “
Evaluation of Orthogonal Mechanical Properties and Density of Human Trabecular Bone From the Major Metaphyseal Regions With Materials Testing and Computed Tomography
,”
J. Orthop. Res.
,
9
(
5
), pp.
674
682
.
11.
Ashman
,
R. B.
,
Rho
,
J. Y.
, and
Turner
,
C. H.
,
1989
, “
Anatomical Variation of Orthotropic Elastic Moduli of the Proximal Human Tibia
,”
J. Biomech.
,
22
(
8–9
), pp.
895
900
.
12.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
,
1995
, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
,
17
(
5
), pp.
347
355
.
13.
Hayes
,
W. C.
,
Swenson
,
L. W.
, and
Schurman
,
D. J.
,
1978
, “
Axisymmetric Finite Element Analysis of the Lateral Tibial Plateau
,”
J. Biomech.
,
11
(
1–2
), pp.
21
33
.
14.
Little
,
R. B.
,
Wevers
,
H. W.
,
Siu
,
D.
, and
Cooke
,
T. D. V.
,
1986
, “
A Three-Dimensional Finite Element Analysis of the Upper Tibia
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
111
119
.
15.
Mehta
,
B. V.
, and
Rajani
,
S.
,
1995
, “
Finite Element Analysis of the Human Tibia
,”
Trans. Biomed. Health
,
2
, pp.
309
316
.
16.
Muller-Karger
,
C. M.
,
Gonzalez
,
C.
,
Aliabadi
,
M. H.
, and
Cerrolaza
,
M.
,
2001
, “
Three Dimensional BEM and FEM Stress Analysis of the Human Tibia Under Pathological Conditions
,”
CMES
,
2
(
1
), pp.
1
13
.https://www.researchgate.net/publication/262485756_Three_dimensional_BEM_and_FEM_stress_analysis_of_the_human_tibia_under_pathological_conditions
17.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. R.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), p.
273
.
18.
Ionescu
,
I.
,
Conway
,
T.
,
Schonning
,
A.
,
Almutairi
,
M.
, and
Nicholson
,
D. W.
,
2003
, “
Solid Modeling and Static Finite Element Analysis of the Human Tibia
,”
Summer Bioengineering Conference
,
Key Biscayne, FL
,
June 25–29
, pp.
889
890
.http://www.tulane.edu/~sbc2003/pdfdocs/0889.PDF
19.
Tasgetiren
,
S.
,
Verim
,
Ö.
,
Songur
,
A.
, and
Akcer
,
S.
,
2011
, “
3D Modeling and Static Finite Element Analysis of Human Tibia and Fibula Bones
,”
Sixth International Advanced Technologies Symposium
,
Elazig, Turkey
,
May 16–18
, pp.
98
101
.
20.
Ün
,
K.
, and
Çalik
,
A.
,
2016
, “
Relevance of Inhomogeneous–Anisotropic Models of Human Cortical Bone: A Tibia Study Using the Finite Element Method
,”
Biotechnol. Biotechnol. Equip.
,
30
(
3
), pp.
538
547
.
21.
Cattaneo
,
P. M.
,
Dalstra
,
M.
, and
Frich
,
L. H.
,
2001
, “
A Three-Dimensional Finite Element Model From Computed Tomography Data: A Semi-Automated Method
,”
Proc. Inst. Mech. Eng., Part H
,
215
(
2
), pp.
203
212
.
22.
Mayott
,
C. W.
,
Langrana
,
N. A.
,
Alexander
,
H.
, and
Curtis
,
G.
,
1983
, “
Geometric and Mass Properties of Bone as Measured Using Computer-Aided Tomography
,”
Advances in Bioengineering
,
American Society of Mechanical Engineering
,
New York
, pp.
28
31
.
23.
Woolson
,
S.
,
Parvati
,
D.
,
Linda
,
F.
, and
Arthur
,
V.
,
1986
, “
Three-Dimensional Imaging of Bone From Computerized Tomography
,”
Clin. Orthop. Relat. Res.
, pp.
239
248
.
24.
Marom
,
S. A.
, and
Linden
,
M. J.
,
1990
, “
Computer Aided Stress Analysis of Long Bones Utilizing Computed Tomography
,”
J. Biomech.
,
23
(
5
), pp.
399
404
.
25.
Gosman
,
J. H.
,
Hubbell
,
Z. R.
,
Shaw
,
C. N.
, and
Ryan
,
T. M.
,
2013
, “
Development of Cortical Bone Geometry in the Human Femoral and Tibial Diaphysis
,”
Anat. Rec.
,
296
(
5
), pp.
774
787
.
26.
Viceconti
,
M.
,
Zannoni
,
C.
, and
Pierotti
,
L.
,
1998
, “
TRI2SOLID: An Application of Reverse Engineering Methods to the Creation of CAD Models of Bone Segments
,”
Comput. Methods Programs Biomed.
,
56
(
3
), pp.
211
220
.
27.
Stojkovic
,
M.
,
Trajanovic
,
M.
,
Vitkovic
,
N.
,
Milovanovic
,
J.
,
Arsic
,
S.
, and
Mitkovic
,
M.
,
2009
, “
Referential Geometrical Entities for Reverse Modeling of Geometry of Femur
,”
Second Thematic Conference on Computational Vision and Medical Image Processing
(
VIPIMAGE
), Porto, Portugal, Oct. 14–16, pp.
189
194
.http://icit.masfak.ni.ac.rs/uploads/articles/icit2_vip2009.pdf
28.
Stojkovic
,
M.
,
Milovanovic
,
J.
,
Vitkovic
,
N.
,
Trajanovic
,
M.
,
Grujovic
,
N.
,
Milivojevic
,
V.
,
Milisavljevic
,
S.
, and
Mrvic
,
S.
,
2010
, “
Reverse Modeling and Solid Free-Form Fabrication of Sternum Implant
,”
Australas. Phys. Eng. Sci. Med.
,
33
(
3
), pp.
243
250
.
29.
Marchi
,
D.
,
Maria
,
S.
, and
Tarli
,
B.
,
2004
, “
Cross-Sectional Geometry of the Limb Bones of the Hominoidea by Biplanar Radiography and Moulding Techniques
,”
J. Anthropol. Sci.
,
82
, pp.
89
102
.
30.
Macintosh
,
A. A.
,
Davies
,
T. G.
,
Ryan
,
T. M.
,
Shaw
,
C. N.
, and
Stock
,
J. T.
,
2013
, “
Periosteal Versus True Cross-Sectional Geometry: A Comparison Along Humeral, Femoral, and Tibial Diaphyses
,”
Am. J. Phys. Anthropol.
,
150
(
3
), pp.
442
452
.
31.
Song
,
S. J.
, and
Jeong
,
B. O.
,
2010
, “
Three-Dimensional Analysis of the Intramedullary Canal Axis of Tibia: Clinical Relevance to Tibia Intramedullary Nailing
,”
Arch. Orthop., Trauma Surg.
,
130
(
7
), pp.
903
907
.
32.
Kwak
,
D. S.
,
Han
,
C. W.
, and
Han
,
S. H.
,
2010
, “
Tibial Intramedullary Canal Axis and Its Influence on the Intramedullary Alignment System Entry Point in Koreans
,”
Anat. Cell Biol.
,
43
(
3
), pp.
260
–26
7
.
33.
Harrington
,
I. J.
,
1976
, “
A Bioengineering Analysis of Force Actions at the Knee in Normal and Pathological Gait
,”
ASME J. Biomech. Eng.
,
11
(
5
), pp.
167
172
.
34.
Morrison
,
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
,
3
(
1
), pp.
51
61
.
35.
Duda
,
G. N.
,
Mandruzzato
,
F.
,
Heller
,
M.
,
Goldhahn
,
J.
,
Moser
,
R.
,
Hehli
,
M.
,
Claes
,
L.
, and
Haas
,
N. P.
,
2001
, “
Mechanical Boundary Conditions of Fracture Healing: Borderline Indications in the Treatment of Unreamed Tibial Nailing
,”
J. Biomech.
,
34
(
5
), pp.
639
650
.
36.
Nalla
,
R. K.
,
Stölken
,
J. S.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2005
, “
Fracture in Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms
,”
J. Biomech.
,
38
(
7
), pp.
1517
1525
.
You do not currently have access to this content.