Ultrasound elastography is a noninvasive imaging modality used to assess the mechanical behavior of tissues, including cancers. Analytical and finite element (FE) models are useful and effective tools to understand the mechanical behavior of cancers and predict elastographic parameters under different testing conditions. A number of analytical and FE models to describe the mechanical behavior of cancers in elastography have been reported in the literature. However, none of these models consider the presence of solid stress (SS) inside the cancer, a clinically significant mechanical parameter with an influential role in cancer initiation, progression, and metastasis. In this paper, we develop an FE model applicable to cancers, which include both SS and elevated interstitial fluid pressure (IFP). This model is then used to assess the effects of these mechanical parameters on the normal strains and the fluid pressure, estimated using ultrasound poroelastography. Our results indicate that SS creates space-dependent changes in the strains and fluid pressure inside the tumor. This is in contrast to the effects produced by IFP on the strains and fluid pressure, which are uniformly distributed across the cancer. The developed model can help elucidating the role of SS on elastographic parameters and images. It may also provide a means to indirectly obtain information about the SS from the observed changes in the experimental elastographic images.

References

References
1.
Stylianopoulos
,
T.
,
Martin
,
J. D.
,
Snuderl
,
M.
,
Mpekris
,
F.
,
Jain
,
S. R.
, and
Jain
,
R. K.
,
2013
, “
Coevolution of Solid Stress and Interstitial Fluid Pressure in Tumors During Progression: Implications for Vascular Collapse
,”
Cancer Res.
,
73
(
13
), pp.
3833
3841
.
2.
Stylianopoulos
,
T.
,
2017
, “
The Solid Mechanics of Cancer and Strategies for Improved Therapy
,”
ASME J. Biomech. Eng.
,
139
(
2
), p.
021004
.
3.
Sarntinoranont
,
M.
,
Rooney
,
F.
, and
Ferrari
,
M.
,
2003
, “
Interstitial Stress and Fluid Pressure Within a Growing Tumor
,”
Ann. Biomed. Eng.
,
31
(
3
), pp.
327
335
.
4.
Fernández-Sánchez
,
M. E.
,
Barbier
,
S.
,
Whitehead
,
J.
,
Béalle
,
G.
,
Michel
,
A.
,
Latorre-Ossa
,
H.
,
Rey
,
C.
,
Fouassier
,
L.
,
Claperon
,
A.
,
Brullé
,
L.
,
Girard
,
E.
,
Servant
,
N.
,
Rio-Frio
,
T.
,
Marie
,
H.
,
Lesieur
,
S.
,
Housset
,
C.
,
Gennisson
,
J.-L.
,
Tanter
,
M.
,
Ménager
,
C.
,
Fre
,
S.
,
Robine
,
S.
, and
Farge
,
E.
,
2015
, “
Mechanical Induction of the Tumorigenic [Bgr]-Catenin Pathway by Tumour Growth Pressure
,”
Nature
,
523
(
7558
), pp.
92
95
.
5.
Stylianopoulos
,
T.
,
Martin
,
J. D.
,
Chauhan
,
V. P.
,
Jain
,
S. R.
,
Diop-Frimpong
,
B.
,
Bardeesy
,
N.
,
Smith
,
B. L.
,
Ferrone
,
C. R.
,
Hornicek
,
F. J.
,
Boucher
,
Y.
,
Munn
,
L. L.
, and
Jain
,
R. K.
,
2012
, “
Causes, Consequences, and Remedies for Growth-Induced Solid Stress in Murine and Human Tumors
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
38
), pp.
15101
15108
.
6.
Rofstad
,
E. K.
,
Galappathi
,
K.
, and
Mathiesen
,
B. S.
,
2014
, “
Tumor Interstitial Fluid Pressure a Link Between Tumor Hypoxia, Microvascular Density, and Lymph Node Metastasis
,”
Neoplasia
,
16
(
7
), pp.
586
594
.
7.
Griffon-Etienne
,
G.
,
Boucher
,
Y.
,
Brekken
,
C.
,
Suit
,
H. D.
, and
Jain
,
R. K.
,
1999
, “
Taxane-Induced Apoptosis Decompresses Blood Vessels and Lowers Interstitial Fluid Pressure in Solid Tumors
,”
Cancer Res.
,
59
(
15
), pp.
3776
3782
.http://cancerres.aacrjournals.org/content/59/15/3776.long
8.
Padera
,
T. P.
,
Kadambi
,
A.
,
di Tomaso
,
E.
,
Carreira
,
C. M.
,
Brown
,
E. B.
,
Boucher
,
Y.
,
Choi
,
N. C.
,
Mathisen
,
D.
,
Wain
,
J.
,
Mark
,
E. J.
, and
Munn
,
L. L.
,
2002
, “
Lymphatic Metastasis in the Absence of Functional Intratumor Lymphatics
,”
Science
,
296
(
5574
), pp.
1883
1886
.
9.
Padera
,
T. P.
,
Stoll
,
B. R.
,
Tooredman
,
J. B.
,
Capen
,
D.
,
di Tomaso
,
E.
, and
Jain
,
R. K.
,
2004
, “
Pathology: Cancer Cells Compress Intratumour Vessels
,”
Nature
,
427
(
6976
), pp.
695
695
.
10.
Facciabene
,
A.
,
Peng
,
X.
,
Hagemann
,
I. S.
,
Balint
,
K.
,
Barchetti
,
A.
,
Wang
,
L.-P.
,
Gimotty
,
P. A.
,
Gilks
,
C. B.
,
Lal
,
P.
,
Zhang
,
L.
, and
Coukos
,
G.
,
2011
, “
Tumour Hypoxia Promotes Tolerance and Angiogenesis Via ccl28 and Treg Cells
,”
Nature
,
475
(
7355
), pp.
226
230
.
11.
Jain
,
R. K.
,
1988
, “
Determinants of Tumor Blood Flow: A Review
,”
Cancer Res.
,
48
(
10
), pp.
2641
2658
.http://cancerres.aacrjournals.org/content/48/10/2641
12.
Helmlinger
,
G.
,
Netti
,
P. A.
,
Lichtenbeld
,
H. C.
,
Melder
,
R. J.
, and
Jain
,
R. K.
,
1997
, “
Solid Stress Inhibits the Growth of Multicellular Tumor Spheroids
,”
Nat. Biotechnol.
,
15
(
8
), pp.
778
783
.
13.
Janet
,
M. T.
,
Cheng
,
G.
,
Tyrrell
,
J. A.
,
Wilcox-Adelman
,
S. A.
,
Boucher
,
Y.
,
Jain
,
R. K.
, and
Munn
,
L. L.
,
2012
, “
Mechanical Compression Drives Cancer Cells Toward Invasive Phenotype
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
3
), pp.
911
916
.https://www.pnas.org/content/109/3/911
14.
Jain
,
R. K.
,
1997
, “
Delivery of Molecular and Cellular Medicine to Solid Tumors
,”
Adv. Drug Delivery Rev.
,
26
(
2–3
), pp.
71
90
.
15.
Burton
,
J. K.
, III
,
2016
,
Theoretical Models for Drug Delivery to Solid Tumors
,
The University of Arizona
,
Tucson, AZ
.
16.
Iranmanesh
,
F.
, and
Nazari
,
M. A.
,
2017
, “
Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model
,”
ASME J. Biomech. Eng.
,
139
(
8
), p.
081009
.
17.
Jiang
,
Y.
,
Pjesivac-Grbovic
,
J.
,
Cantrell
,
C.
, and
Freyer
,
J. P.
,
2005
, “
A Multiscale Model for Avascular Tumor Growth
,”
Biophys. J.
,
89
(
6
), pp.
3884
3894
.
18.
Ambrosi
,
D.
, and
Mollica
,
F.
,
2002
, “
On the Mechanics of a Growing Tumor
,”
Int. J. Eng. Sci.
,
40
(
12
), pp.
1297
1316
.
19.
Araujo
,
R. P.
, and
McElwain
,
D.
,
2004
, “
A Linear-Elastic Model of Anisotropic Tumour Growth
,”
Eur. J. Appl. Math.
,
15
(
3
), pp.
365
384
.
20.
MacLaurin
,
J.
,
Chapman
,
J.
,
Jones
,
G. W.
, and
Roose
,
T.
,
2012
, “
The Buckling of Capillaries in Solid Tumours
,”
Proc. R. Soc. A
,
468
(
2148
), pp.
4123
4145
.
21.
Kim
,
Y.
,
Stolarska
,
M. A.
, and
Othmer
,
H. G.
,
2007
, “
A Hybrid Model for Tumor Spheroid Growth In Vitro—Part I: Theoretical Development and Early Results
,”
Math. Models Methods Appl. Sci.
,
17
(
Suppl. 1
), pp.
1773
1798
.
22.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1989
, “
Transport of Fluid and Macromolecules in Tumors—Part I: Role of Interstitial Pressure and Convection
,”
Microvasc. Res.
,
37
(
1
), pp.
77
104
.
23.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1990
, “
Transport of Fluid and Macromolecules in Tumors—Part II: Role of Heterogeneous Perfusion and Lymphatics
,”
Microvasc. Res.
,
40
(
2
), pp.
246
263
.
24.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1991
, “
Transport of Fluid and Macromolecules in Tumors—Part IV: A Microscopic Model of the Perivascular Distribution
,”
Microvasc. Res.
,
41
(
2
), pp.
252
272
.
25.
Wang
,
C.-H.
, and
Li
,
J.
,
1998
, “
Three-Dimensional Simulation of Igg Delivery to Tumors
,”
Chem. Eng. Sci.
,
53
(
20
), pp.
3579
3600
.
26.
Wang
,
C.-H.
,
Li
,
J.
,
Teo
,
C. S.
, and
Lee
,
T.
,
1999
, “
The Delivery of Bcnu to Brain Tumors
,”
J. Controlled Release
,
61
(
1–2
), pp.
21
41
.
27.
Zhao
,
J.
,
Salmon
,
H.
, and
Sarntinoranont
,
M.
,
2007
, “
Effect of Heterogeneous Vasculature on Interstitial Transport Within a Solid Tumor
,”
Microvasc. Res.
,
73
(
3
), pp.
224
236
.
28.
Netti
,
P.
,
Baxter
,
L.
,
Coucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R.
,
1995
, “
A Poroelastic Model for Interstitial Pressure in Tumors
,”
Biorheology
,
32
(
2–3
), pp.
346
346
.
29.
Soltani
,
M.
, and
Chen
,
P.
,
2011
, “
Numerical Modeling of Fluid Flow in Solid Tumors
,”
PLoS One
,
6
(
6
), p.
e20344
.
30.
Soltani
,
M.
, and
Chen
,
P.
,
2013
, “
Numerical Modeling of Interstitial Fluid Flow Coupled With Blood Flow Through a Remodeled Solid Tumor Microvascular Network
,”
PLoS One
,
8
(
6
), p.
e67025
.
31.
Cattaneo
,
L.
, and
Zunino
,
P.
,
2014
, “
Computational Models for Fluid Exchange Between Microcirculation and Tissue Interstitium
,”
Networks Heterogeneous Media
,
9
(
1
), pp.
135
159
.
32.
Ambrosi
,
D.
, and
Preziosi
,
L.
,
2008
, “
Cell Adhesion Mechanisms and Stress Relaxation in the Mechanics of Tumours
,”
Biomech. Model. Mechanobiol.
,
8
(
5
), p.
397413
.https://link.springer.com/article/10.1007/s10237-008-0145-y
33.
Preziosi
,
L.
,
Ambrosi
,
D.
, and
Verdier
,
C.
,
2010
, “
An Elasto-Visco-Plastic Model of Cell Aggregates
,”
J. Theor. Biol.
,
262
(
1
), pp.
35
47
.
34.
Mpekris
,
F.
,
Angeli
,
S.
,
Pirentis
,
A. P.
, and
Stylianopoulos
,
T.
,
2015
, “
Stress-Mediated Progression of Solid Tumors: Effect of Mechanical Stress on Tissue Oxygenation, Cancer Cell Proliferation, and Drug Delivery
,”
Biomech. Model. Mechanobiol.
,
14
(
6
), pp.
1391
1402
.
35.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
,
1991
, “
Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging
,
13
(
2
), pp.
111
134
.
36.
Ophir
,
J.
,
Alam
,
S.
,
Garra
,
B.
,
Kallel
,
F.
,
Konofagou
,
E.
,
Krouskop
,
T.
, and
Varghese
,
T.
,
1999
, “
Elastography: Ultrasonic Estimation and Imaging of the Elastic Properties of Tissues
,”
Proc. Inst. Mech. Eng., Part H
,
213
(
3
), pp.
203
233
.
37.
Righetti
,
R.
,
Garra
,
B. S.
,
Mobbs
,
L. M.
,
Kraemer-Chant
,
C. M.
,
Ophir
,
J.
, and
Krouskop
,
T. A.
,
2007
, “
The Feasibility of Using Poroelastographic Techniques for Distinguishing Between Normal and Lymphedematous Tissues In Vivo
,”
Phys. Med. Biol.
,
52
(
21
), p.
6525
.
38.
Righetti
,
R.
,
Ophir
,
J.
,
Srinivasan
,
S.
, and
Krouskop
,
T. A.
,
2004
, “
The Feasibility of Using Elastography for Imaging the Poisson's Ratio in Porous Media
,”
Ultrasound Med. Biol.
,
30
(
2
), pp.
215
228
.
39.
Islam
,
M. T.
,
Chaudhry
,
A.
,
Unnikrishnan
,
G.
,
Reddy
,
J.
, and
Righetti
,
R.
,
2018
, “
An Analytical Model of Tumors With Higher Permeability Than Surrounding Tissues for Ultrasound Elastography Imaging
,”
J. Eng. Sci. Med. Diagn. Ther.
,
1
(
3
), p.
031006
.
40.
Islam
,
M. T.
,
Chaudhry
,
A.
,
Unnikrishnan
,
G.
,
Reddy
,
J.
, and
Righetti
,
R.
,
2018
, “
An Analytical Poroelastic Model for Ultrasound Elastography Imaging of Tumors
,”
Phys. Med. Biol.
,
63
(
2
), p.
025031
.
41.
Islam
,
M. T.
,
Reddy
,
J.
, and
Righetti
,
R.
,
2019
, “
An Analytical Poroelastic Model of a Nonhomogeneous Medium Under Creep Compression for Ultrasound Poroelastography Applications—Part I
,”
ASME J. Biomech. Eng.
,
141
(
6
), p.
060902
.
42.
Islam
,
M. T.
,
Reddy
,
J.
, and
Righetti
,
R.
,
2019
, “
An Analytical Poroelastic Model of a Nonhomogeneous Medium Under Creep Compression for Ultrasound Poroelastography Applications—Part II
,”
ASME J. Biomech. Eng.
,
141
(
6
), p.
060903
.
43.
Islam
,
M. T.
,
Reddy
,
J.
, and
Righetti
,
R.
,
2018
, “
A Model-Based Approach to Investigate the Effect of Elevated Interstitial Fluid Pressure on Strain Elastography
,”
Phys. Med. Biol.
,
63
(
21
), p.
215011
.
44.
Leiderman
,
R.
,
Barbone
,
P. E.
,
Oberai
,
A. A.
, and
Bamber
,
J. C.
,
2006
, “
Coupling Between Elastic Strain and Interstitial Fluid Flow: Ramifications for Poroelastic Imaging
,”
Phys. Med. Biol.
,
51
(
24
), pp.
6291
6313
.
45.
Karlsson
,
S.
,
2006
, “Version 6.6, ABAQUS,”
ABAQUS, Providence, RI
.
46.
Berry
,
G. P.
,
Bamber
,
J. C.
,
Armstrong
,
C. G.
,
Miller
,
N. R.
, and
Barbone
,
P. E.
,
2006
, “
Towards an Acoustic Model-Based Poroelastic Imaging Method—Part I: Theoretical Foundation
,”
Ultrasound Med. Biol.
,
32
(
4
), pp.
547
567
.
47.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
,
1997
, “
Macro-and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors
,”
AIChE J.
,
43
(
3
), pp.
818
834
.
48.
Zhi
,
H.
,
Ou
,
B.
,
Luo
,
B.-M.
,
Feng
,
X.
,
Wen
,
Y.-L.
, and
Yang
,
H.-Y.
,
2007
, “
Comparison of Ultrasound Elastography, Mammography, and Sonography in the Diagnosis of Solid Breast Lesions
,”
J. Ultrasound Med.
,
26
(
6
), pp.
807
815
.
49.
Rzymski
,
P.
, and
Opala
,
T.
,
2011
, “
Elastography as a New Diagnostic Tool to Detect Breast Cancer–Evaluation of Research and Clinical Applications
,”
Przegl. Menopauzalny
,
10
, pp.
357
362
.https://www.termedia.pl/Elastography-as-a-new-diagnostic-tool-to-detect-breast-cancer-r-n-evaluation-of-research-and-clinical-applications,4,17580,0,1.html
50.
Mpekris
,
F.
,
Baish
,
J. W.
,
Stylianopoulos
,
T.
, and
Jain
,
R. K.
,
2017
, “
Role of Vascular Normalization in Benefit From Metronomic Chemotherapy
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
8
), pp.
1994
1999
.
51.
Fung
,
Y.-C.
,
1993
, “
Mechanical Properties and Active Remodeling of Blood Vessels
,”
Biomechanics
,
Springer
,
New York
, pp.
321
391
.
52.
Netti
,
P. A.
,
Berk
,
D. A.
,
Swartz
,
M. A.
,
Grodzinsky
,
A. J.
, and
Jain
,
R. K.
,
2000
, “
Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors
,”
Cancer Res.
,
60
(
9
), pp.
2497
2503
.http://cancerres.aacrjournals.org/content/60/9/2497.long
53.
Less
,
J. R.
,
Posner
,
M. C.
,
Boucher
,
Y.
,
Borochovitz
,
D.
,
Wolmark
,
N.
, and
Jain
,
R. K.
,
1992
, “
Interstitial Hypertension in Human Breast and Colorectal Tumors
,”
Cancer Res.
,
52
(
22
), pp.
6371
6374
.http://cancerres.aacrjournals.org/content/52/22/6371.long
54.
Milosevic
,
M. F.
,
Fyles
,
A. W.
,
Wong
,
R.
,
Pintilie
,
M.
,
Kavanagh
,
M.-C.
,
Levin
,
W.
,
Manchul
,
L. A.
,
Keane
,
T. J.
, and
Hill
,
R. P.
,
1998
, “
Interstitial Fluid Pressure in Cervical Carcinoma
,”
Cancer
,
82
(
12
), pp.
2418
2426
.
55.
Nia
,
H. T.
,
Liu
,
H.
,
Seano
,
G.
,
Datta
,
M.
,
Jones
,
D.
,
Rahbari
,
N.
,
Incio
,
J.
,
Chauhan
,
V. P.
,
Jung
,
K.
,
Martin
,
J. D.
, and
Askoxylakis
,
V.
,
2016
, “
Solid Stress and Elastic Energy as Measures of Tumour Mechanopathology
,”
Nat. Biomed. Eng.
,
1
, p.
0004
.
56.
Varghese
,
T.
, and
Ophir
,
J.
,
1997
, “
A Theoretical Framework for Performance Characterization of Elastography: The Strain Filter
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
44
(
1
), pp.
164
172
.
57.
Nieskoski
,
M. D.
,
Marra
,
K.
,
Gunn
,
J. R.
,
Hoopes
,
P. J.
,
Doyley
,
M. M.
,
Hasan
,
T.
,
Trembly
,
B. S.
, and
Pogue
,
B. W.
,
2017
, “
Collagen Complexity Spatially Defines Microregions of Total Tissue Pressure in Pancreatic Cancer
,”
Sci. Rep.
,
7
(
1
), p.
10093
.https://www.nature.com/articles/s41598-017-10671-w
58.
Sayed
,
A.
,
Layne
,
G.
,
Abraham
,
J.
, and
Mukdadi
,
O.
,
2012
, “
3D Ultrasound Elastographic Imaging and Characterization of Breast Cancer In Vivo
,”
ASME
Paper No. IMECE2012-89624.
59.
Ma
,
S.
,
Zhu
,
M.
,
Xia
,
X.
,
Guo
,
L.
,
Genin
,
G. M.
,
Sacks
,
M. S.
,
Gao
,
M.
,
Mutic
,
S.
,
Hu
,
Y.
,
Hu
,
C.-H.
, and
Feng
,
Y.
,
2019
, “
A Preliminary Study of the Local Biomechanical Environment of Liver Tumors In Vivo
,”
Med. Phys.
,
46
(
4
), pp.
1728
1739
.
60.
Islam
,
M. T.
,
Tang
,
S.
,
Liverani
,
C.
,
Tasciotti
,
E.
, and
Righetti
,
R.
,
2018
, “
Non-Invasive Imaging of the Young's Modulus and Poisson's Ratio of Cancer Tumor In Vivo
,” preprint arXiv:1809.02929.
61.
Islam
,
M. T.
,
Tasciotti
,
E.
, and
Righetti
,
R.
,
2018
, “
Estimation of Vascular Permeability in Irregularly Shaped Cancers Using Ultrasound Poroelastography
,”
IEEE Trans. Biomed. Eng.
, (under review).
62.
Locke
,
S.
,
2014
, “
The Effect of Interstitial Pressure on Tumour Stiffness
,”
Ph.D. thesis
, University of Toronto,
Toronto, ON, Canada
.https://tspace.library.utoronto.ca/bitstream/1807/67892/1/Locke_Stuart_201411_MSc_thesis.pdf
You do not currently have access to this content.