Retrievable inferior vena cava (IVC) filters are self-expanding metallic devices implanted in the IVC to prevent migration of thrombi from the deep veins of the legs and pelvis to the lungs. The risk of complications from the filters increases with duration of implantation, but retrieval may be difficult due to intimal hyperplasia around the components of the filter. In this study, the potential for delivery of radiofrequency (RF) energy to the IVC wall via the filter was investigated. IVC filters were deployed in four swine while attached to a snare connected to a 480 kHz RF generator. Energy ranging from 0 to 48 kJ was applied via the filter followed by resheathing and withdrawal of the filter while connected to a force measurement device. Resheathing forces for the zero-energy cohort and pooled data from the 6–24 kJ cohorts were 4.50 ± 0.70 N and 4.50 ± 0.75 N, respectively. Petechial hemorrhages and variable nonocclusive thrombi were noted in some cohorts including the zero-energy cohort, consistent with delivery and acute retrieval of an IVC filter. Histologically, the extent of RF-induced injury was subtle at 6 kJ with focal areas of homogenized collagen while the 12 kJ cohort showed segmental tissue charring with coagulation necrosis, which was more extensive for the 24 kJ cohort. The 48 kJ energy caused more extensive and nontarget organ damage. The study demonstrated feasibility of delivery of RF to the IVC wall via a deployed filter, supporting further study of the ability of local RF heating of the IVC wall to inhibit the neointimal hyperplasia or as an aid in retrieval.

References

References
1.
Wadhwa
,
V.
,
Trivedi
,
P. S.
,
Chatterjee
,
K.
,
Tamrazi
,
A.
,
Hong
,
K.
,
Lessne
,
M. L.
, and
Ryu
,
R. K.
,
2017
, “
Decreasing Utilization of Inferior Vena Cava Filters in Post-FDA Warning Era: Insights From 2005 to 2014 Nationwide Inpatient Sample
,”
J. Am. Coll. Radiol.
,
14
(
9
), pp.
1144
1150
.
2.
Kaufman
,
J. A.
,
Rundback
,
J. H.
,
Kee
,
S. T.
,
Geerts
,
W.
,
Gillespie
,
D.
,
Kahn
,
S. R.
,
Kearon
,
C.
,
Rectenwald
,
J.
,
Rogers
,
F. B.
,
Stavropoulos
,
S. W.
,
Streiff
,
M.
,
Vedantham
,
S.
, and
Venbrux
,
A.
,
2009
, “
Development of a Research Agenda for Inferior Vena Cava Filters: Proceedings From a Multidisciplinary Research Consensus Panel
,”
J. Vasc. Interv. Radiol.
,
20
(
6
), pp.
697
707
.
3.
Angel
,
L. F.
,
Tapson
,
V.
,
Galgon
,
R. E.
,
Restrepo
,
M. I.
, and
Kaufman
,
J.
,
2011
, “
Systematic Review of the Use of Retrievable Inferior Vena Cava Filters
,”
J. Vasc. Interv. Radiol.
,
22
(
11
), pp.
1522
1530
.
4.
U.S. Food and Drug Administration
, “
Inferior Vena Cava (IVC) Filters: Initial Communication: Risk of Adverse Events With Long Term Use
,”
The Food and Drug Administration
,
Silver Spring, MD
, accessed Oct. 21, 2018, https://wayback.archive-it.org/7993/20170112002302/http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm221676.htm
5.
Ahmed
,
O.
,
Wadhwa
,
V.
,
Patel
,
K.
,
Patel
,
M. V.
,
Turba
,
U. C.
, and
Arslan
,
B.
,
2018
, “
Rising Retrieval Rates of Inferior Vena Cava Filters in the United States: Insights From the 2012 to 2016 Summary Medicare Claims Data
,”
J. Am. Coll. Radiol.
,
15
(
11
), pp.
1553
1557
.
6.
Jia
,
Z.
,
Fuller
,
T. A.
,
McKinney
,
J. M.
,
Paz-Fumagalli
,
R.
,
Frey
,
G. T.
,
Sella
,
D. M.
,
Ha
,
T. V.
, and
Wang
,
W.
,
2018
, “
Utility of Retrievable Inferior Vena Cava Filters: A Systematic Literature Review and Analysis of the Reasons for Nonretrieval of Filters With Temporary Indications
,”
Cardiovasc. Intervent. Radiol.
,
41
(
5
), pp.
675
682
.
7.
Lee
,
M. J.
,
Valenti
,
D.
,
De Gregorio
,
M. A.
,
Minocha
,
J.
,
Rimon
,
U.
, and
Pellerin
,
O.
,
2015
, “
The CIRSE Retrievable IVC Filter Registry: Retrieval Success Rates in Practice
,”
Cardiovasc. Intervent. Radiol.
,
38
(
6
), pp.
1502
1507
.
8.
Desai
,
K. R.
,
Lewandowski
,
R. J.
,
Salem
,
R.
,
Mouli
,
S. K.
,
Karp
,
J. K.
,
Laws
,
J. L.
, and
Ryu
,
R. K.
,
2015
, “
Retrieval of Inferior Vena Cava Filters With Prolonged Dwell Time: A Single-Center Experience in 648 Retrieval Procedures
,”
JAMA Int. Med.
,
175
(
9
), pp.
1572
1574
.
9.
Desai
,
K. R.
,
Laws
,
J. L.
,
Salem
,
R.
,
Mouli
,
S. K.
,
Errea
,
M. F.
,
Karp
,
J. K.
,
Yang
,
Y.
,
Ryu
,
R. K.
, and
Lewandowski
,
R. J.
,
2017
, “
Defining Prolonged Dwell Time: When Are Advanced Inferior Vena Cava Filter Retrieval Techniques Necessary? an Analysis in 762 Procedures
,”
Circ. Cardiovasc. Interv.
,
10
(
6
), p.
e003957
.
10.
Stavropoulos
,
S. W.
,
Ge
,
B. H.
,
Mondschein
,
J. I.
,
Shlansky-Goldberg
,
R. D.
,
Sudheendra
,
D.
, and
Trerotola
,
S. O.
,
2015
, “
Retrieval of Tip-Embedded Inferior Vena Cava Filters by Using the Endobronchial Forceps Technique: Experience at a Single Institution
,”
Radiology
,
275
(
3
), pp.
900
907
.
11.
Chick
,
J. F.
,
Stavropoulos
,
S. W.
,
Shin
,
B. J.
,
Shlansky-Goldberg
,
R. D.
,
Mondschein
,
J. I.
,
Sudheendra
,
D.
,
Nadolski
,
G. J.
,
Watts
,
M. M.
, and
Trerotola
,
S. O.
,
2016
, “
A 16-F Sheath With Endobronchial Forceps Improves Reported Retrieval Success of Long-Dwelling Closed Cell Inferior Vena Cava Filter Designs
,”
J. Vasc. Interv. Radiol.
,
27
(
7
), pp.
1027
1033
.
12.
Wadhwani
,
A.
,
Bandali
,
M.
,
Farrell
,
J.
,
Kuriachan
,
V.
, and
Herget
,
E.
,
2016
, “
Complex Inferior Vena Cava Filter Removal With a Metallic Bladed-Tip Mechanical Sheath
,”
J. Vasc. Interv. Radiol.
,
27
(
11
), pp.
1726
1727
.
13.
Charalel
,
R. A.
, and
Darcy
,
M. D.
,
2017
, “
Retrieval of a Long-Standing Inferior Vena Cava Filter Using the TightRail Rotating Dilator Sheath
,”
J. Vasc. Interv. Radiol.
,
28
(
8
), pp.
1197
1199
.
14.
Kuo
,
W. T.
,
Odegaard
,
J. I.
,
Louie
,
J. D.
,
Sze
,
D. Y.
,
Unver
,
K.
,
Kothary
,
N.
,
Rosenberg
,
J. K.
,
Hovsepian
,
D. M.
,
Hwang
,
G. L.
, and
Hofmann
,
L. V.
,
2011
, “
Photothermal Ablation With the Excimer Laser Sheath Technique for Embedded Inferior Vena Cava Filter Removal: Initial Results From a Prospective Study
,”
J. Vasc. Interv. Radiol.
,
22
(
6
), pp.
813
823
.
15.
Kuo
,
W. T.
,
Odegaard
,
J. I.
,
Rosenberg
,
J. K.
, and
Hofmann
,
L. V.
,
2017
, “
Laser-Assisted Removal of Embedded Vena Cava Filters: A 5-Year First-In-Human Study
,”
Chest
,
151
(
2
), pp.
417
424
.
16.
Haemmerich
,
D.
,
2010
, “
Biophysics of Radiofrequency Ablation
,”
Crit. Rev. Biomed. Eng.
,
38
(
1
), pp.
53
63
.
17.
Karanian
,
J.
,
Jones
,
E.
,
Bakhutashvili
,
I.
,
Guidry
,
R.
,
Esparza-Trujillo
,
J.
,
Seifabadi
,
R.
,
Krishnasamy
,
V.
,
Pritchard
,
W.
, and
Wood
,
B.
,
2018
, “
Abstract No. 652 an Image-Based Evaluation of IVC Filter Implant Healing in a Swine Model: Implications for Performance and Retrievability
,”
J. Vasc. Interv. Radiol.
,
29
(
4
), p.
S270
.
You do not currently have access to this content.