Convection-enhanced delivery (CED) is an investigational therapy developed to circumvent the limitations of drug delivery to the brain. Catheters are used in CED to locally infuse therapeutic agents into brain tissue. CED has demonstrated clinical utility for treatment of malignant brain tumors; however, CED has been limited by lack of CED-specific catheters. Therefore, we developed a multiport, arborizing catheter to maximize drug distribution for CED. Using a multiphasic finite element (FE) framework, we parametrically determined the influence of design variables of the catheter on the dispersal volume of the infusion. We predicted dispersal volume of a solute infused in a permeable hyperelastic solid matrix, as a function of separation distance (ranging from 0.5 to 2.0 cm) of imbedded infusion cavities that represented individual ports in a multiport catheter. To validate the model, we compared FE solutions of pressure-controlled infusions to experimental data of indigo carmine dye infused in agarose tissue phantoms. The Tc50, defined as the infusion time required for the normalized solute concentration between two sources to equal 50% of the prescribed concentration, was determined for simulations with infusion pressures ranging from 1 to 4 kPa. In our validated model, we demonstrate that multiple ports increase dispersal volume with increasing port distance but are associated with a significant increase in infusion time. Tc50 increases approximately tenfold when doubling the port distance. Increasing the infusion flow rate (from 0.7 μL/min to 8.48 μL/min) can mitigate the increased infusion time. In conclusion, a compromise of port distance and flow rate could improve infusion duration and dispersal volume.

References

References
1.
Ostrom
,
Q. T.
,
Gittleman
,
H.
,
Xu
,
J.
,
Kromer
,
C.
,
Wolinsky
,
Y.
,
Kruchko
,
C.
, and
Barnholtz-Sloan
,
J. S.
,
2016
, “
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013
,”
Neuro-Oncology
,
18
(
Suppl. 5
), pp.
v1
v75
.
2.
Berger
,
M. S.
,
1994
, “
Malignant Astrocytomas: Surgical Aspects
,”
Semin. Oncol.
,
21
(
2
), pp.
172
185
.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8153663
3.
Lesser
,
G. J.
, and
Grossman
,
S.
,
1994
, “
The Chemotherapy of High-Grade Astrocytomas
,”
Semin. Oncol.
,
21
(
2
), pp.
220
235
.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8153666
4.
Shaw
,
E. J.
,
2000
, “
Central Nervous System Overview
,”
Clinical Radiation Oncology
,
L. L.
Gunderson
, and
J. E.
Tepper
, eds.,
Churchill-Livingstone
,
Philadelphia, PA
, pp.
314
354
.
5.
Galanis
,
E.
, and
Bucker
,
J.
,
2000
, “
Chemotherapy for High-Grade Gliomas
,”
Br. J. Cancer
,
82
(
8
), pp.
1371
1380
.
6.
Grossman
,
S. A.
, and
Batara
,
J. F.
,
2004
, “
Current Management of Glioblastoma Multiforme
,”
Semin. Oncol.
,
31
(
5
), pp.
635
644
.
7.
Bart
,
J.
,
Groen
,
H. J. M.
,
Hendrikse
,
N. H.
,
van der Graaf
,
W. T. A.
,
Vaalburg
,
W.
, and
de Vries
,
E. G. E.
,
2000
, “
The Blood-Brain Barrier and Oncology: New Insights Into Function and Modulation
,”
Cancer Treat. Rev.
,
26
(
6
), pp.
449
462
.
8.
Kemper
,
E. M.
,
Boogerd
,
W.
,
Thuis
,
I.
,
Beijnen
,
J. H.
, and
van Tellingen
,
O.
,
2004
, “
Modulation of the Blood-Brain Barrier in Oncology: Therapeutic Opportunities for the Treatment of Brain Tumours?
,”
Cancer Treat. Rev.
,
30
(
5
), pp.
415
423
.
9.
Ostrom
,
Q. T.
,
Gittleman
,
H.
,
Fulop
,
J.
,
Liu
,
M.
,
Blanda
,
R.
,
Kromer
,
C.
,
Wolinsky
,
Y.
,
Kruchko
,
C.
, and
Barnholtz-Sloan
,
J. S.
,
2015
, “
CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008–2012
,”
Neuro-Oncology
,
17
(
Suppl. 4
), pp.
iv1
iv62
.
10.
Morrison
,
P. F.
,
Laske
,
D. W.
,
Bobo
,
H.
,
Oldfield
,
E. H.
, and
Dedrick
,
R. L.
,
1994
, “
High-Flow Microinfusion: Tissue Penetration and Pharmacodynamics
,”
Am. J. Physiol.
,
266
(
1 Pt. 2
), pp.
R292
R305
.
11.
Morrison
,
P. F.
,
Chen
,
M. Y.
,
Chadwick
,
R. S.
,
Lonser
,
R. R.
, and
Oldfield
,
E. H.
,
1999
, “
Focal Delivery During Direct Infusion to Brain: Role of Flow Rate, Catheter Diameter, and Tissue Mechanics
,”
Am. J. Physiol.
,
277
(
4
), pp.
R1218
R1229
.
12.
Bobo
,
R. H.
,
Laske
,
D. W.
,
Akbasak
,
A.
,
Morrison
,
P. F.
,
Dedrick
,
R. L.
, and
Oldfield
,
E. H.
,
1994
, “
Convection-Enhanced Delivery of Macromolecules in the Brain
,”
Proc. Natl. Acad. Sci. USA
,
91
(
6
), pp.
2076
2080
.
13.
Laske
,
D. W.
,
Youle
,
R. J.
, and
Oldfield
,
E. H.
,
1997
, “
Tumor Regression With Regional Distribution of the Targeted Toxin TF-CRM107 in Patients With Malignant Brain Tumors
,”
Nat. Med.
,
3
(
12
), pp.
1362
1368
.
14.
Vogelbaum
,
M. A.
, and
Aghi
,
M. K.
,
2015
, “
Convection-Enhanced Delivery for the Treatment of Glioblastoma
,”
Neuro-Oncology
,
17
(
Suppl. 2
), pp.
ii3
ii8
.
15.
Vandergrift
,
W. A.
,
Patel
,
S. J.
,
Nicholas
,
J. S.
, and
Varma
,
A. K.
,
2006
, “
Convection-Enhanced Delivery of Immunotoxins and Radioisotopes for Treatment of Malignant Gliomas
,”
Neurosurg. Focus
,
20
(
4
), p.
E13
.
16.
Patel
,
S. J.
,
Shapiro
,
W. R.
,
Laske
,
D. W.
,
Jensen
,
R. L.
,
Asher
,
A. L.
,
Wessels
,
B. W.
,
Carpenter
,
S. P.
, and
Shan
,
J. S.
,
2005
, “
Safety and Feasibility of Convection-Enhanced Delivery of Cotara for the Treatment of Malignant Glioma: Initial Experience in 51 Patients
,”
Neurosurgery
,
56
(
6
), pp.
1243
1253
.
17.
Kunwar
,
S.
,
2003
, “
Convection Enhanced Delivery of IL13-PE38QQR for Treatment of Recurrent Malignant Glioma: Presentation of Interim Findings From Ongoing Phase I Studies
,”
Acta Neurochir. Suppl.
,
88
, pp.
105
111
.https://www.ncbi.nlm.nih.gov/pubmed/14531568
18.
Debinski
,
W.
, and
Tatter
,
S. B.
,
2009
, “
Convection-Enhanced Delivery for the Treatment of Brain Tumors
,”
Expert Rev. Neurother.
,
9
(
10
), pp.
1519
1527
.
19.
Kunwar
,
S.
,
Chang
,
S.
,
Westphal
,
M.
,
Vogelbaum
,
M.
,
Sampson
,
J.
,
Barnett
,
G.
,
Shaffrey
,
M.
,
Ram
,
Z.
,
Piepmeier
,
J.
,
Prados
,
M.
,
Croteau
,
D.
,
Pedain
,
C.
,
Leland
,
P.
,
Husain
,
S. R.
,
Joshi
,
B. H.
,
Puri
,
R. K.
, and
Group
,
P. S.
,
2010
, “
Phase III Randomized Trial of CED of IL13-PE38QQR versus Gliadel Wafers for Recurrent Glioblastoma
,”
Neuro Oncol.
,
12
(
8
), pp.
871
881
.
20.
Sampson
,
J. H.
,
Archer
,
G.
,
Pedain
,
C.
,
Wembacher-Schroder
,
E.
,
Westphal
,
M.
,
Kunwar
,
S.
,
Vogelbaum
,
M. A.
,
Coan
,
A.
,
Herndon
,
J. E.
,
Raghavan
,
R.
,
Brady
,
M. L.
,
Reardon
,
D. A.
,
Friedman
,
A. H.
,
Friedman
,
H. S.
,
Rodriguez-Ponce
,
M. I.
,
Chang
,
S. M.
,
Mittermeyer
,
S.
,
Croteau
,
D.
,
Puri
,
R. K.
, and
Investigators
,
P. T.
,
2010
, “
Poor Drug Distribution as a Possible Explanation for the Results of the PRECISE Trial
,”
J. Neurosurg.
,
113
(
2
), pp.
301
309
.
21.
Brady
,
M. L.
,
Raghavan
,
R.
,
Singh
,
D.
,
Anand
,
P. J.
,
Fleisher
,
A. S.
,
Mata
,
J.
,
Broaddus
,
W. C.
, and
Olbricht
,
W. L.
,
2014
, “
In Vivo Performance of a Microfabricated Catheter for Intraparenchymal Delivery
,”
J. Neurosci. Methods
,
229
, pp.
76
83
.
22.
Gill
,
T.
,
Barua
,
N. U.
,
Woolley
,
M.
,
Bienemann
,
A. S.
,
Johnson
,
D. E.
,
Sullivan
,
S. O.
,
Murray
,
G.
,
Fennelly
,
C.
,
Lewis
,
O.
,
Irving
,
C.
,
Wyatt
,
M. J.
,
Moore
,
P.
, and
Gill
,
S. S.
,
2013
, “
In Vitro and In Vivo Testing of a Novel Recessed-Step Catheter for Reflux-Free Convection-Enhanced Drug Delivery to the Brain
,”
J. Neurosci. Methods
,
219
(
1
), pp.
1
9
.
23.
Krauze
,
M. T.
,
Saito
,
R.
,
Noble
,
C.
,
Tamas
,
M.
,
Bringas
,
J.
,
Park
,
J. W.
,
Berger
,
M. S.
, and
Bankiewicz
,
K.
,
2005
, “
Reflux-Free Cannula for Convection-Enhanced High-Speed Delivery of Therapeutic Agents
,”
J. Neurosurg.
,
103
(
5
), pp.
923
929
.
24.
Vazquez
,
L. C.
,
Hagel
,
E.
,
Willenberg
,
B. J.
,
Dai
,
W.
,
Casanova
,
F.
,
Batich
,
C. D.
, and
Sarntinoranont
,
M.
,
2012
, “
Polymer-Coated Cannulas for the Reduction of Backflow During Intraparenchymal Infusions
,”
J. Mater. Sci. Mater. Med.
,
23
(
8
), pp.
2037
2046
.
25.
Yin
,
D.
,
Forsayeth
,
J.
, and
Bankiewicz
,
K. S.
,
2010
, “
Optimized Cannula Design and Placement for Convection-Enhanced Delivery in Rat Striatum
,”
J. Neurosci. Methods
,
187
(
1
), pp.
46
51
.
26.
DeAngelis
,
L. M.
,
2001
, “
Brain Tumors
,”
N. Engl. J. Med.
,
344
(
2
), pp.
114
123
.
27.
Vogelbaum
,
M. A.
,
2014
, “
A Pilot Trial of Intraparenchymally-Administered Topotecan Using Convection-Enhanced Delivery (CED) in Patients With Suspected Recurrent/Progressive WHO Grade III or IV (High Grade) Glioma Requiring Stereotactic Biopsy
,” National Library of Medicine, Bethesda, MD, Document No. NCT02278510.
28.
Barua
,
N. U.
,
Hopkins
,
K.
,
Woolley
,
M.
,
O'Sullivan
,
K.
,
Harrison
,
R.
,
Edwards
,
R. J.
,
Bienemann
,
A.
,
Wyatt
,
M. J.
,
Arshad
,
A.
, and
Gill
,
S.
,
2016
, “
A Novel Implantable Catheter System With Transcutaneous Port for Intermittent Convection-Enhanced Delivery of Carboplatin for Recurrent Glioblastoma
,”
Drug Delivery
,
23
(
1
), pp.
17
173
.
29.
Elenes
,
E. Y.
, and
Rylander
,
C. G.
,
2017
, “
Maximizing Local Access to Therapeutic Deliveries in Glioblastoma—Part II: Arborizing Catheter for Convection-Enhanced Delivery in Tissue Phantoms
,”
Glioblastoma
,
S.
De Vleeschouwer
, ed.,
Codon Publications
,
Brisbane, QLD
.
30.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
602
614
.
31.
Ateshian
,
G. A.
,
Likhitpanichkul
,
M.
, and
Hung
,
C. T.
,
2006
, “
A Mixture Theory Analysis for Passive Transport in Osmotic Loading of Cells
,”
J. Biomech.
,
39
(
3
), pp.
464
475
.
32.
Ateshian
,
G. A.
,
Albro
,
M. B.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2011
, “
Finite Element Implementation of Mechanochemical Phenomena in Neutral Deformable Porous Media Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081005
.
33.
Maas
,
S.
,
Rawlins
,
D.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2015
, “
FEBio: Finite Elements for Biomechanics Theory Manual
,” accessed Feb. 27, 2019, http://mrl.sci.utah.edu/software/febio
34.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.
35.
Normand
,
V.
,
Lootens
,
D. L.
,
Amici
,
E.
,
Plucknett
,
K. P.
, and
Aymard
,
P.
,
2000
, “
New Insights Into Agarose Gel Mechanical Properties
,”
Biomacromolecules
,
1
(
4
), pp.
730
738
.
36.
Pluen
,
A.
,
Netti
,
P. A.
,
Jain
,
R. K.
, and
Berk
,
D. A.
,
1999
, “
Diffusion of Macromolecules in Agarose Gels: Comparison of Linear and Globular Configurations
,”
Biophys. J.
,
77
(
1
), pp.
542
552
.
37.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.
38.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
,
17
(
1–2
), pp.
111
123
.
39.
Garcia
,
J. J.
, and
Smith
,
J. H.
,
2009
, “
A Biphasic Hyperelastic Model for the Analysis of Fluid and Mass Transport in Brain Tissue
,”
Ann. Biomed. Eng.
,
37
(
2
), pp.
375
386
.
40.
Chen
,
X.
, and
Sarntinoranont
,
M.
,
2007
, “
Biphasic Finite Element Model of Solute Transport for Direct Infusion Into Nervous Tissue
,”
Ann. Biomed. Eng.
,
35
(
12
), pp.
2145
2158
.
41.
Sobey
,
I.
, and
Wirth
,
B.
,
2006
, “
Effect of Non-Linear Permeability in a Spherically Symmetric Model of Hydrocephalus
,”
Math. Med. Biol.
,
23
(
4
), pp.
339
361
.
42.
Cheng
,
S.
, and
Bilston
,
L. E.
,
2007
, “
Unconfined Compression of White Matter
,”
J. Biomech.
,
40
(
1
), pp.
117
124
.
43.
Muralidharan
,
P.
,
2006
, “
Finite Deformation Biphasic Material Characterization and Modeling of Agarose Gel for Functional Tissue Engineering Applications
,” Master's thesis, University of Cincinnati, Cincinnati, OH.
44.
Tao
,
L.
, and
Nicholson
,
C.
,
1996
, “
Diffusion of Albumins in Rat Cortical Slices and Relevance to Volume Transmission
,”
Neuroscience
,
75
(
3
), pp.
839
847
.
45.
Rausch
,
M. K.
, and
Humphrey
,
J. D.
,
2017
, “
A Computational Model of the Biochemomechanics of an Evolving Occlusive Thrombus
,”
J. Elasticity
,
129
(
1–2
), pp.
125
144
.
46.
Chen
,
M. Y.
,
Lonser
,
R. R.
,
Morrison
,
P. F.
,
Governale
,
L. S.
, and
Oldfield
,
E. H.
,
1999
, “
Variables Affecting Convection-Enhanced Delivery to the Striatum: A Systematic Examination of Rate of Infusion, Cannula Size, Infusate Concentration, and Tissue–Cannula Sealing Time
,”
J. Neurosurg.
,
90
(
2
), pp.
315
320
.
47.
Netti
,
P. A.
, and
Travascio
,
F.
,
2003
, “
Coupled Macromolecular Transport and Gel Mechanics: Poroviscoelastic Approach
,”
Bioeng. Food Nat. Prod.
,
49
(
6
), pp.
1580
1596
.
48.
Sampson
,
J. H.
,
Akabani
,
G.
,
Archer
,
G. E.
,
Bigner
,
D. D.
,
Berger
,
M. S.
,
Friedman
,
A. H.
,
Friedman
,
H. S.
,
Herndon
,
J. E.
, II
,
Kunwar
,
S.
,
Marcus
,
S.
,
McLendon
,
R. E.
,
Paolino
,
A.
,
Penne
,
K.
,
Provenzale
,
J.
,
Quinn
,
J.
,
Reardon
,
D. A.
,
Rich
,
J.
,
Stenzel
,
T.
,
Tourt-Uhlig
,
S.
,
Wikstrand
,
C.
,
Wong
,
T.
,
Williams
,
R.
,
Yuan
,
F.
,
Zalutsky
,
M. R.
, and
Pastan
,
I.
,
2003
, “
Progress Report of a Phase I Study of the Intracerebral Microinfusion of a Recombinant Chimeric Protein Composed of Transforming Growth Factor (TGF)-α and a Mutated Form of the Pseudomonas Exotoxin Termed PE-38 (TP-38) for the Treatment of Malignant Brain Tumors
,”
J. Neurooncol.
,
65
(
1
), pp.
27
35
.
49.
Rand
,
R. W.
,
Kreitman
,
R. J.
,
Patronas
,
N.
,
Varricchio
,
F.
,
Pastan
,
I.
, and
Puri
,
R. K.
,
2000
, “
Intratumoral Administration of Recombinant Circularly Permuted Interleukin-4-Pseudonomas Exotoxin in Patients With High-Grade Glioma
,”
Clin. Cancer Res.
,
6(6)
, pp.
2157
2165
.https://www.ncbi.nlm.nih.gov/pubmed/10873064
50.
Lonser
,
R. R.
,
Walbridge
,
S.
,
Garmestani
,
K.
,
Butman
,
J. A.
,
Walters
,
H. A.
,
Vortmeyer
,
A. O.
,
Morrison
,
P. F.
,
Brechbiel
,
M. W.
, and
Oldfield
,
E. H.
,
2002
, “
Successful and Safe Perfusion of the Primate Brainstem: In Vivo Magnetic Resonance Imaging of Macromolecular Distribution During Infusion
,”
J. Neurosurg.
,
97
(
4
), pp.
905
913
.
51.
Lonser
,
R. R.
,
Sarntinoranont
,
M.
,
Morrison
,
P. F.
, and
Oldfield
,
E. H.
,
2015
, “
Convection-Enhanced Delivery to the Central Nervous System
,”
J. Neurosurg.
,
122
(
3
), pp.
697
706
.
52.
Chittiboina
,
P.
,
Heiss
,
J. D.
,
Warren
,
K. E.
, and
Lonser
,
R. R.
,
2014
, “
Magnetic Resonance Imaging Properties of Convective Delivery in Diffuse Intrinsic Pontine Gliomas
,”
J. Neurosurg. Pediatr.
,
13
(
3
), pp.
276
282
.
53.
Smith
,
J. H.
, and
Garcia
,
J. J.
,
2011
, “
A Nonlinear Biphasic Model of Flow-Controlled Infusions in Brain: Mass Transport Analyses
,”
J. Biomech.
,
44
(
3
), pp.
524
531
.
54.
Polivka
,
J.
, Jr.
,
Polivka
,
J.
,
Holubec
,
L.
,
Kubikova
,
T.
,
Priban
,
V.
,
Hes
,
O.
,
Pivovarcikova
,
K.
, and
Treskova
,
I.
,
2017
, “
Advances in Experimental Targeted Therapy and Immunotherapy for Patients With Glioblastoma Multiforme
,”
Anticancer Res.
,
37
(
1
), pp.
21
33
.http://ar.iiarjournals.org/content/37/1/21.full
55.
Touat
,
M.
,
Idbaih
,
A.
,
Sanson
,
M.
, and
Ligon
,
K. L.
,
2017
, “
Glioblastoma Targeted Therapy: Updated Approaches From Recent Biological Insights
,”
Ann. Oncol.
,
28
(
7
), pp.
1457
1472
.
56.
Xu
,
Y. Y.
,
Gao
,
P.
,
Sun
,
Y.
, and
Duan
,
Y. R.
,
2015
, “
Development of Targeted Therapies in Treatment of Glioblastoma
,”
Cancer Biol. Med.
,
12
(
3
), pp.
223
237
.
57.
Chen
,
Z. J.
,
Broaddus
,
W. C.
,
Viswanathan
,
R. R.
,
Raghavan
,
R.
, and
Gillies
,
G. T.
,
2002
, “
Intraparenchymal Drug Delivery Via Positive-Pressure Infusion: Experimental and Modeling Studies of Poroelasticity in Brain Phantom Gels
,”
IEEE Trans. Biomed. Eng.
,
49
(
2
), pp.
85
96
.
58.
Chen
,
Z. J.
,
Gillies
,
G. T.
,
Broaddus
,
W. C.
,
Prabhu
,
S. S.
,
Fillmore
,
H.
,
Mitchell
,
R. M.
,
Corwin
,
F. D.
, and
Fatouros
,
P. P.
,
2004
, “
A Realistic Brain Tissue Phantom for Intraparenchymal Infusion Studies
,”
J. Neurosurg.
,
101
(
2
), pp.
314
322
.
59.
Kaczmarek
,
M.
,
Subramaniam
,
R. P.
, and
Neff
,
S. R.
,
1997
, “
The Hydromechanics of Hydrocephalus: Steady-State Solutions for Cylindrical Geometry
,”
Bull. Math. Biol.
,
59
(
2
), pp.
295
323
.
60.
Stewart
,
D. C.
,
Rubiano
,
A.
,
Dyson
,
K.
, and
Simmons
,
C. S.
,
2017
, “
Mechanical Characterization of Human Brain Tumors From Patients and Comparison to Potential Surgical Phantoms
,”
PLoS One
,
12
(
6
), p.
e0177561
.
61.
Raghavan
,
R.
,
Brady
,
M. L.
,
Rodriguez-Ponce
,
M. I.
,
Hartlep
,
A.
,
Pedain
,
C.
, and
Sampson
,
J. H.
,
2006
, “
Convection-Enhanced Delivery of Therapeutics for Brain Disease, and Its Optimization
,”
Neurosurg. Focus
,
20
(
4
), p.
E12
.
62.
Smith
,
J. H.
, and
Garcia
,
J. J.
,
2009
, “
A Nonlinear Biphasic Model of Flow-Controlled Infusion in Brain: Fluid Transport and Tissue Deformation Analyses
,”
J. Biomech.
,
42
(
13
), pp.
2017
2025
.
You do not currently have access to this content.