Assessing combat helmet ballistic performance is a costly endeavor using either an experimental or a computational process. Experimental assessment requires many iterations and helmets to acquire a sufficient data set. To circumvent this, computational simulation is incorporated into the design process to supplement a few experiments. However, due to the complex constitutive response of the helmet (anisotropic elasticity, plasticity, damage initiation and evolution, and failure), it is computationally costly to run many ballistic impact simulations. The goal of this work is to develop a computer-aided design (cad) software to rapidly analyze combat helmets undergoing a ballistic impact. The software considers a representative mix of potential threats, helmet geometry modifications and additions, brain functional anatomy, and injury considerations. The resulting software demonstrates that a given helmet can be analyzed in a matter of minutes on a standard desktop computer and parametric studies can be completed in a matter of hours. The results of the cad software show how helmet design parameters such as helmet shell materials, geometry, and ceramic appliques all affect helmet ballistic performance.

References

References
1.
Li
,
X. G.
,
Gao
,
X. L.
, and
Kleiven
,
S.
,
2016
, “
Behind Helmet Blunt Trauma Induced by Ballistic Impact: A Computational Model
,”
Int. J. Impact Eng.
,
91
, pp.
56
67
.
2.
Salimi Jazi
,
M.
,
Rezaei
,
A.
,
Karami
,
G.
,
Azarmi
,
F.
, and
Ziejewski
,
M.
,
2014
, “
A Computational Study of Influence of Helmet Padding Materials on the Human Brain Under Ballistic Impacts
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
12
), pp.
1368
1382
.
3.
Lee
,
H. P.
, and
Gong
,
S. W.
,
2010
, “
Finite Element Analysis for the Evaluation of Protective Functions of Helmets Against Ballistic Impact
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
537
550
.
4.
Yang
,
J.
, and
Dai
,
J.
,
2010
, “
Simulation-Based Assessment of Rear Effect to Ballistic Helmet Impact
,”
Comput. Aided. Des. Appl.
,
7
(
1
), pp.
59
73
.
5.
Tse
,
K. M.
,
Tan
,
L. B.
,
Yang
,
B.
,
Tan
,
V. B. C.
, and
Lee
,
H. P.
,
2016
, “
Effect of Helmet Liner Systems and Impact Directions on Severity of Head Injuries Sustained in Ballistic Impacts: A Finite Element (FE) Study
,”
Med. Biol. Eng. Comput.
,
55
(4), pp. 641–662.
6.
Tan
,
L. B.
,
Tse
,
K. M.
,
Lee
,
H. P.
,
Tan
,
V. B. C.
, and
Lim
,
S. P.
,
2012
, “
Performance of an Advanced Combat Helmet With Different Interior Cushioning Systems in Ballistic Impact: Experiments and Finite Element Simulations
,”
Int. J. Impact Eng.
,
50
, pp.
99
112
.
7.
Aare
,
M.
, and
Kleiven
,
S.
,
2007
, “
Evaluation of Head Response to Ballistic Helmet Impacts Using the Finite Element Method
,”
Int. J. Impact Eng.
,
34
(
3
), pp.
596
608
.
8.
Tham
,
C. Y.
,
Tan
,
V. B. C.
, and
Lee
,
H. P.
,
2008
, “
Ballistic Impact of a KEVLAR Helmet: Experiment and Simulations
,”
Int. J. Impact Eng.
,
35
(
5
), pp.
304
318
.
9.
Li
,
Y. Q.
,
Li
,
X. G.
, and
Gao
,
X.-L.
,
2015
, “
Modeling of Advanced Combat Helmet Under Ballistic Impact
,”
ASME J. Appl. Mech.
,
82
(
11
), p.
111004
.
10.
Walsh
,
S. M.
,
Scott
,
B. R.
,
Jones
,
T. L.
,
Cho
,
K.
, and
Wolbert
,
J.
,
2008
,
A Materials Approach in the Development of Multi-Threat Warfighter Head Protection
, Army Research Lab, Aberdeen Proving Ground, MD.
11.
Hamouda
,
A. M. S.
,
Sohaimi
,
R. M.
,
Zaidi
,
A. M. A.
, and
Abdullah
,
S.
,
2012
, “
Materials and Design Issues for Military Helmets
,”
Advances in Military Textiles and Personal Equipment
(Woodhead Publishing Series in Textiles), Elsevier, Amsterdam, The Netherlands, pp. 103–138.
12.
Kulkarni
,
S. G.
,
Gao
,
X.-L.
,
Horner
,
S. E.
,
Zheng
,
J. Q.
, and
David
,
N. V.
,
2013
, “
Ballistic Helmets—Their Design, Materials, and Performance Against Traumatic Brain Injury
,”
Compos. Struct.
,
101
, pp. 313–331.https://www.sciencedirect.com/science/article/pii/S0263822313000950
13.
Gordon
,
C. C.
,
Blackwell
,
C. L.
,
Bradtmiller
,
B.
, and
Hotzman
,
J.
,
2013
, “
2010 Anthropometric Survey of U.S. Marine Corps Personnel: Methods and Summary
,” Army Natick Soldier Research, Development and Engineering Center, Natick, MA, Technical Report No.
NATICK/TR-13/018
.http://www.dtic.mil/dtic/tr/fulltext/u2/a581918.pdf
14.
Brodmann
,
K.
,
1909
,
Vergleichende Lokalisationslehre Der Grosshirnrinde in Ihren Prinzipien Dargestellt Auf Grund Des Zellenbaues
, J. A. Barth Verlag, Lepzig, Germany.
15.
Schmahmann
,
J. D.
,
Doyon
,
J.
,
McDonald
,
D.
,
Holmes
,
C.
,
Lavoie
,
K.
,
Hurwitz
,
A.
,
Kabani
,
N.
,
Toga
,
A.
,
Evans
,
A.
, and
Petrides
,
M.
,
1999
, “
Three-Dimensional MRI Atlas of the Human Cerebellum in Proportional Stereotaxic Space
,”
NeuroImage
,
10
(3), pp. 233–260.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.7045&rep=rep1&type=pdf
16.
Ford
,
M.
,
Matic
,
P.
, and
Leung
,
A.
,
2013
, “
Expanding Helmet Design Methodologies Through Brain Functional Area Representative Threat Models
,”
ASME
Paper No. IMECE2013-64959.
17.
Oishi
,
K.
,
Faria
,
A.
,
Jiang
,
H.
,
Li
,
X.
,
Akhter
,
K.
,
Zhang
,
J.
,
Hsu
,
J. T.
,
Miller
,
M. I.
,
van Zijl
,
P. C. M.
,
Albert
,
M.
,
Lyketsos
,
C. G.
,
Woods
,
R.
,
Toga
,
A. W.
,
Pike
,
G. B.
,
Rosa-Neto
,
P.
,
Evans
,
A.
,
Mazziotta
,
J.
, and
Mori
,
S.
,
2009
, “
Atlas-Based Whole Brain White Matter Analysis Using Large Deformation Diffeomorphic Metric Mapping: Application to Normal Elderly and Alzheimer's Disease Participants
,”
Neuroimage
,
46
(
2
), pp.
486
499
.
18.
Hisley
,
D. M.
,
Gurganus
,
J. C.
, and
Drysdale
,
A. W.
,
2011
, “
Experimental Methodology Using Digital Image Correlation to Assess Ballistic Helmet Blunt Trauma
,”
ASME J. Appl. Mech.
,
78
(
5
), p. 051022.
19.
Tan
,
X. G.
,
Saunders
,
R. N.
, and
Matic
,
P.
,
2017
, “
Combat Helmet Pad Suspension Performance for Anthropomorphic Fit Designs, Brain Functional Areas and Injury Considerations
,”
ASME
Paper No. IMECE2017-70619.
20.
Blatt
,
A.
, and
Bellis
,
E.
,
2004
, “
Tables of Potential Occult Injury Frequencies
,” Center for Transportation Injury Research, Buffalo, NY.
21.
Washington State Department of Health, CHS
,
2011
, “
Washington State Hospital Data Dictionary—Version CVW4 (DOH 530-124)
,” Washington State Department of Health, CHS, Olympia, WA, pp.
123
128
.
22.
Payne
,
A. R.
, and
Patel
,
S.
,
2001
, “
Occupant Protection and Egress in Rail Systems
,”
Mot. Ind. Res. Assoc
.http://www.eurailsafe.net/subsites/operas/HTML/Section3/Section3.3frm.htm
23.
Matic
,
P.
,
Moser
,
A. E.
, and
Saunders
,
R. N.
,
2016
, “
A Combat Helmet Computer Aided Design Strategy Incorporating Ballistic Threat, Brain Functional Areas and Injury Considerations
,”
Personal Armour Systems Symposium
, Amsterdam, The Netherlands, Sept. 19–23.
24.
Matic
,
P.
,
Moser
,
A. E.
, and
Saunders
,
R. N.
,
2016
, “
Combat Helmet Design Incorporating Multiple Ballistic Threats, Brain Functional Areas and Injury Considerations
,”
ASME
Paper No. IMECE2016-67364.
25.
Takhounts
,
E. G.
,
Craig
,
M. J.
,
Moorhouse
,
K.
,
McFadden
,
J.
, and
Hasija
,
V.
,
2013
, “
Development of Brain Injury Criteria (BrIC)
,”
Stapp Car Crash J.
,
57
, pp.
243
266
.
26.
Rowson
,
S.
, and
Duma
,
S. M.
,
2012
, “
The Virginia Tech Response
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2512
2518
.
27.
Kimpara
,
H.
, and
Iwamoto
,
M.
,
2012
, “
Mild Traumatic Brain Injury Predictors Based on Angular Accelerations During Impacts
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
114
126
.
You do not currently have access to this content.