This paper presents a novel decision support system (DSS) to assist medics administer optimal clinical diagnosis and effective healthcare post-treatment solutions. The DSS model that evolved from the research work predicted treatment of cerebral aneurysm using fuzzy classifications and neural network algorithms specific to patient clinical case data. The Lyapunov stability implemented with Levenberg–Marquardt model was used to advance DSS learning functional paradigms and algorithms in disease diagnosis to mimic specific patient disease conditions and symptoms. Thus, the patients' disease conditions were assigned fuzzy class dummy data to validate the DSS as a functional system in conformity with core sector standards of International Electrotechnical Commission—IEC61508. The disease conditions and symptoms inputted in the DSS simulated synaptic weights assigned linguistic variables defined as likely, unlikely, and very unlikely to represent clinical conditions to specific patient disease states. Furthermore, DSS simulation results correlated with clinical data to predict quantitative coil embolization packing densities required to limit aneurismal inflow, pressure residence time, and flow rate critical to design treatments required. The profiles of blood flow, hazards risks, safety thresholds, and coiling density requirements to reduce aneurismal inflow significantly at lower parent vessel flow rates was predicted by DSS and relates to specific anatomical and physiological parameters for post-treatment of cerebral aneurysm disease.

References

References
1.
Taylor
,
C. A.
,
Draney
,
M. T.
,
Ku
,
J. P.
,
Parker
,
D.
,
Steele
,
B. N.
,
Wang
,
K.
, and
Zarins
,
C. K.
,
1999
, “
Predictive Medicine: Computational Techniques in Therapeutic Decision-Making, Comput
,”
Aided Surg.
,
4
(
5
), pp.
231
247
.
2.
Taylor
,
C. A.
,
2003
, “
Simulation-Based Medical Planning for C Cardiovascular Disease: Challenges and Opportunities
,”
Summer Bioengineering Conference
, Biscayne, FL, June 25–29
3.
Perktold
,
K.
,
Resch
,
M.
, and
Florian
,
H.
,
1991
, “
Pulsatile non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
,”
ASME J. Biomech. Eng.
,
113
, pp.
463
475
.
4.
Peskin
,
C. S.
, and
McQueen
,
D. M.
,
1991
, “
Computational Biofluid Dynamics
,”
Fluid Dynamics in Biology
,
American Mathematical Society, Providence
,
Rhode Island
, Vol.
111
, pp.
161
186
.
5.
Quarteroni
,
A.
,
Ragni
,
S.
, and
Veneziani
,
A.
,
2001
, “
Coupling Between Lumped and Distributed Models for Blood Flow Problems
,”
Comput. Visualization Sci.
,
4
(
2
), pp.
111
124
.
6.
Taylor
,
C. A.
,
Hughes
,
T. H.
, and
Zarins
,
C.
,
1996
, “
Computational Investigations in Vascular Disease
,”
Comput. Phys.
,
10
(
3
), pp.
224
232
.
7.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Meth. Appl. Mech. Eng.
,
158
(
1–2
), pp.
155
196
.
8.
Perktold
,
K.
, and
Rappitsch
,
G.
,
1995
, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
,
28
(
7
), pp.
845
856
.
9.
Veneziani
,
A.
,
1998
, “
Mathematical and Numerical Modeling of Blood Flow Problems
,” Ph.D. thesis, Politecnico di Milano, Milano, Italy.
10.
Lederberg
,
J.
,
1987
, “
How Dendral Was Conceived and Born
,”
ACM Conference on History Medical Informatics
, Bethesda, MD, Nov. 5–6, pp. 5–19.
11.
Alavi
,
M.
, and
Joachimsthaler
,
E. A.
,
1992
, “
Revisiting DSS Implementation Research: A Meta-Analysis of the Literature and Suggestions for Researchers
,”
MIS Q.
,
16
(
1
), pp.
95
116
.
12.
Bonczek
,
R. H.
,
Holsapple
,
C. W.
, and
Whinston
,
A. B.
,
1981
,
Foundations of Decision Support Systems
,
Academic Press
,
New York
.
13.
Carter
,
G. M.
,
Murray
,
M. P.
,
Walker
,
R. G.
, and
Walker
,
W. E.
,
1992
,
Building Organizational Decision Support Systems
,
Academic Press
,
Boston, MA
.
14.
Keen
,
P. G. W.
,
1978
, “
Decision Support Systems: An Organizational Perspective
,” Addison-Wesley, Reading, MA.
15.
Formaggia
,
L.
,
Noblie
,
F.
,
Quarteroni
,
A.
, and
Veneziani
,
A.
,
1999
, “
Multiscale Modeling of the Circulatory System: A Preliminary Analysis
,”
Comput. Visualization Sci.
,
2
(
2–3
), pp.
75
83
.
16.
Diraz
,
A.
,
1993
, “
Dorsal Internal Carotid Artery Aneurysm: Classification, Pathogenesis, and Surgical Considerations
,”
Neurosurg. Rev.
,
16
(
3
), pp.
197
204
.
17.
Yoshimoto
,
Y.
,
1996
, “
Cerebral Aneurysms Unrelated to Arterial Bifurcations
,”
Acta Neurochir.
,
138
(
8
), pp.
958
963
.
18.
Broderick
,
J. P.
,
Brott
,
T.
,
Tomsick
,
T.
,
Miller
,
R.
, and
Huster
,
G.
,
1993
, “
Intracerebral Hemorrhage More Than Twice as Common as Subarachnoid Hemorrhage
,”
J. Neurosurg.
,
78
(
2
), pp.
188
191
.
19.
Batjer
,
M. H.
,
Dacey
,
R.
,
Diringer
,
M.
,
Haley
,
E. C.
,
Sternau
,
L. L.
,
Torner
,
J.
,
Admans
,
H. P.
, and
Feinberg
,
W.
,
1994
, “
Guidelines for the Management of Aneurismal Subarachnoid Hemorrhage: A Statement for Healthcare Professionals From Special Writing Group of the Stroke Council
,”
Am. Heart Assoc. Circ.
,
90
(
5
), pp.
2592
2605
.
20.
Byun
,
H.
, and
Rhee
,
K.
,
2004
, “
CFD Modeling of Blood Flow Following Coil Embolization of Aneurysms
,”
Med. Eng. Phys.
,
26
(
9
), pp.
755
761
.
21.
Selvarajah
,
J.
,
Scott
,
M.
,
Sitvaros
,
S.
,
Hulme
,
S.
,
Georgiou
,
R.
, and
Rothwell
,
N.
,
2009
, “
Potential Surrogate Markers of Cerebral Micro Vascular Angiopathy in Asymptomatic Subjects at Risk and Stroke
,”
Eur. Radiol.
,
19
, pp.
1011
1018
.
22.
Wijdicks
,
E. F.
,
Kallmes
,
D. F.
,
Manno
,
E. M.
,
Fulgham
,
J. R.
, and
Piepgras
,
D. G.
,
2005
, “
Subarachnoid Hemorrhage: Neurointensive Care and Aneurysm Repair
,”
Mayo Clin. Proc.
,
80
(
4
), pp.
550
559
.
23.
Teather
,
D.
,
Morton
,
B. A.
,
Du Boulay
,
G. H.
,
Wills
,
K. M.
,
Innocent
,
P. R.
, and
Plummer
,
D.
,
1985
, “
Brains-Computer Assistance for CT Scan Interpretation and Cerebral Disease Diagnosis
,”
Stat. Med.
,
4
, pp.
311
315
.
24.
Boulay
,
G. H.
,
Teather
,
D.
,
Morton
,
B. A.
,
Wills
,
K. M.
,
Innocent
,
P. R.
, and
Plummer
,
D.
,
1987
, “
Brains—A Computer Advisor System to Aid in CT Scan Interpretation and Cerebral Disease Diagnosis
,”
Neuroradiology
,
29
, pp.
196
199
.
25.
Ferguson
,
G. G.
,
1972
, “
Physical Factors in the Initiation, Growth, and Rupture of Human Intracranial Saccular Aneurysms
,”
J. Neurosurg.
,
37
(
6
), pp.
666
677
.
26.
Sol
,
H. G.
,
1987
, “
Expert Systems and Artificial Intelligence in Decision Support Systems
,”
Second Mini Euro Conference
, Lunteren, The Netherlands, Nov. 17–20.
27.
Sistrom
,
C. L.
,
Dang
,
P. A.
,
Weiburg
,
J. B.
,
Dreyer
,
K. J.
,
Rosenhal
,
D. I.
, and
Thrall
,
J. H.
,
2009
, “
Effect of Computerized Order Entry With Integrated Decision Support on the Growth of Outpatient Procedure Volumes: Seven Year Time Series Analysis
,”
Radiology
,
51
, pp.
147
155
.
28.
Stivaros
,
S. M.
,
Gledson
,
A.
,
Nenadic
,
G.
,
Zeng
,
X. J.
,
Kearne
,
J.
, and
Jackson
,
A.
,
2010
, “
Decision Support Systems for Clinical Radiological Practice-Towards the Next Generation
,”
Br. J. Radiol.
,
83
(
995
), pp.
904
914
.
29.
An
,
M.
,
Wang
,
J.
, and
Ruxton
,
T.
,
2000
, “
The Development of Fuzzy Linguistic Risk Levels for Risk Analysis of Offshore Engineering Products Using Approximate Reasoning Approach
,”
19th International Conference on Offshore Mechanics and Arctic Engineering
, New Orleans, LA, Feb. 14–17.
30.
Akpan
,
V. A.
,
2011
, “
Non-Linear Adaptive Model Predictive Control Based on Artificial Neural Network, Application to Acetic Anhydride Production Process
,”
J. Eng. Res.
,
16
(
1
), pp: 45–57.
31.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feed Forward Network With Marquardt Algorithm
,”
IEEE Trans. Neural Network
,
5
(
6
), pp.
989
993
.
32.
Haykin
,
S.
,
1999
,
Neural Networks: A Comprehensive Foundation
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
33.
Singh
,
S. K.
,
Bostrom
,
M.
,
Popa
,
D. O.
, and
Wiley
,
C. W.
,
1993
, “
Design of an Interactive Lumbar Puncture Simulator With Tactile Feedback
,” Second
IEEE
International Workshop on Robot and Human Communication
, Tokyo, Japan, Nov. 3–5, pp.
156
159
.
34.
Abhulimen
,
K. E.
, and
Susu
,
A. A.
,
2004
, “
Liquid Pipeline Leak Detection System: Model Development and Numerical Simulation
,”
Chem. Eng. J.
,
97
(
1
), pp.
47
67
.
35.
Abhulimen
,
K. E.
, and
Susu
,
A. A.
,
2007
, “
Modeling Complex Pipeline Network Leak Detection System
,”
Process Saf. Environ. Prot.
,
85
(
6
), pp.
579
598
.
36.
Billings
,
S. A.
, and
Zhu
,
Q. M.
,
1994
, “
Non-Linear Model Validation Using Correlation Test
,”
Int. J. Control
,
55
, pp.
193
244
.
37.
Babiker
,
M. H.
,
Gonzalez
,
L. F.
,
Albuquerque
,
F.
,
Collins
,
D.
,
Elvikis
,
A.
, and
Frakes
,
D. H.
,
2010
, “
Quantitative Effects of Coil Packing Density on Cerebral Aneurysm Fluid Dynamics: An In Vitro Steady Flow Study
,”
Ann. Biomed. Eng.
38
(
7
), pp.
2293
2301
.
38.
Turban
,
E.
,
Aronson
,
J. E.
, and
Liang
,
T. P.
,
2005
, Decision Support Systems and Intelligent Systems, Pearson Education, Inc., Hoboken, NJ, p.
574
.
39.
Garcia
,
C. E.
,
Prett
,
D. M.
, and
Morari
,
M.
,
1989
, “
Model Predictive Control: Theory and Practice-A Survey
,”
Automatica
,
25
(
3
), pp.
335
348
.
40.
Alter
,
S. L.
,
1980
, “
Decision Support Systems
,”
Current Practice and Continuing Challenges
,
Addison-Wesley
,
Reading, MA
.
41.
Musen
,
M. A.
,
Middleton
,
B.
, and
Greenes
,
R. A.
,
2014
, “
Clinical Decision-Support Systems
,”
Biomedical Informatics
,
Springer
,
London
, pp.
643
674
.
42.
Kawamoto
,
K.
,
2005
, “
Improving Clinical Practice Using Clinical Decision Support Systems: A Systematic Review of Trials to Identify Features Critical to Success
,”
BMJ
,
330
(
7494
), p.
765
.
43.
Gobin
,
Y. P.
,
Counord
,
J. L.
,
Flaud
,
P.
, and
Duffaux
,
J.
,
1994
, “
In Vitro Study of Hemodynamics in a Giant Saccular Aneurysm Model: Influence of Flow Dynamics in the Parent Vessel and Effects of Coil Embolization
,”
Neuroradiology
,
36
(
7
), pp.
530
536
.
44.
Fernandez
,
Z. A.
,
Guglielmi
,
G.
, and
Viñuela
,
F.
,
1994
, “
Endovascular Occlusion of Intracranial Aneurysms With Electrically Detachable Coils: Correlation of Aneurysm Neck Size and Treatment Results
,”
AJNR
,
15
, pp.
815
820
.
45.
Huang
,
J.
,
Girt
,
M. J.
,
Gailloud
,
P.
, and
Tamargo
,
R. J.
,
2005
, “
Intracranial Aneurysm in the Pediatric Population: Case Series and Literature Review
,”
Surg. Neurol.
,
63
(
5
), pp.
424
432
.
46.
Lindsay
,
W. K.
,
Bone
,
I.
, and
Callander
,
R.
,
1997
,
Neurology and Neurosurgery Illustrated
,
3rd ed.
,
Churchill Livingston
,
London
, pp.
270
272
.
47.
Soderman
,
M.
,
Babic
,
D.
,
Homan
,
R.
, and
Andersson
,
T.
,
2005
, “
3D Roadmap in Neuroangiography: Technique and Clinical Interest
,”
Neuroradiology
(epub).
48.
Braakman
,
R.
,
Sipkema
,
P.
, and
Westerhof
,
N.
,
1989
, “
A Dynamic Nonlinear Lumped Parameter Model for Skeletal Muscle Circulation
,”
Ann. Biomed. Eng.
,
17
(
6
), pp.
593
616
.
49.
Pietrabissa
,
R.
,
Quarteroni
,
A.
,
Dubini
,
G.
,
Veneziani
,
A.
,
Mighavacca
,
F.
, and
Ragni
,
S.
,
2000
, “
The Global Cardiovascular Hemodynamics Down to the Local Blood Motion: Preliminary Applications of a Multiscale Approach
,” European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Barcelona, Spain, Sept. 1–14.
You do not currently have access to this content.