This paper describes the design, fabrication, and characterization of a micromachined high-frequency Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystal/epoxy 1–3 composite ultrasound circular array. The 1–3 composites were fabricated by deep reactive ion etching (DRIE) of PMN-PT single crystal. The feature size of single crystal pillars was 18 μm in diameter. The kerf between pillars was less than 4 μm. A 50-element circular array transducer (radially outward) with the pitch of 100 μm was wrapped around a needle resulting in an outer diameter of 1.7 mm. The array test showed that the center frequency reached 39±2 MHz and −6-dB fractional bandwidth was 82±6%. The insertion loss was −41 dB, and crosstalk between adjacent elements was −24 dB. A radial outward imaging testing with phantom wires (D = 50 μm) was conducted. The image was in a dynamic range of 30 dB to show a penetration depth of 6 mm by using the synthetic aperture method. The −6-dB beam width was estimated to be 60 μm in the axial direction at 3.1 mm distance away from the probe. The results suggest that the 40 MHz micromachined 1–3 composite circular array is promising for intravascular ultrasound (IVUS) imaging applications.

References

References
1.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
de Korte
,
C. L.
,
Aikawa
,
M.
,
Juhani Airaksinen
,
K. E.
,
Assmann
,
G.
,
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W., Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
,
2003
, “
From Vulnerable Plaque to Vulnerable Patient a Call for New Definitions and Risk Assessment Strategies—Part I
,”
Circulation
,
108
(
14
), pp.
1664
1672
.
2.
Mozaffarian
,
D.
,
Benjamin
,
E. J.
,
Go
,
A. S.
,
Arnett
,
D. K.
,
Blaha
,
M. J.
,
Cushman
,
M.
,
Das
,
S. R.
,
de Ferranti
,
S.
,
Després
,
J.-P.
,
Fullerton
,
H. J.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Liu
,
S.
,
Mackey
,
R. H.
,
Magid
,
D. J.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
,
Moy
,
C. S.
,
Muntner
,
P.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Rodriguez
,
C. J.
,
Rosamond
,
W.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Woo
,
D.
,
Yeh
,
R. W.
, and
Turner
,
M. B.
,
2016
, “
Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association
,”
Circulation
,
133
(
4
), pp.
447
454
.
3.
Rathod
,
K. S.
,
Hamshere
,
S. M.
,
Jones
,
D. A.
, and
Mathur
,
A.
,
2015
, “
Intravascular Ultrasound Versus Optical Coherence Tomography for Coronary Artery Imaging—Apples and Oranges
,”
Interventional Cardiol. Rev.
,
10
(
1
), pp.
8
15
.
4.
Constantinides
,
P.
,
1990
, “
Cause of Thrombosis in Human Atherosclerotic Arteries
,”
Am. J. Cardiol.
,
66
(
16
), pp.
G37
G40
.
5.
Lockwood
,
G.
,
Turnball
,
D.
,
Christopher
,
D.
, and
Foster
,
F.
,
1996
, “
Beyond 30 MHz [Applications of High-Frequency Ultrasound Imaging]
,”
Eng. Med. Biol. Mag., IEEE
,
15
(
6
), pp.
60
71
.
6.
Bezanson
,
A.
,
Adamson
,
R.
, and
Brown
,
J. A.
,
2014
, “
Fabrication and Performance of a Miniaturized 64-Element High-Frequency Endoscopic Phased Array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
61
(
1
), pp.
33
43
.
7.
Nishimura
,
R. A.
,
Edwards
,
W. D.
,
Warnes
,
C. A.
,
Reeder
,
G. S.
,
Holmes
,
D. R.
,
Tajik
,
A. J.
, and
Yock
,
P. G.
,
1990
, “
Intravascular Ultrasound Imaging: In Vitro Validation and Pathologic Correlation
,”
J. Am. Coll. Cardiol.
,
16
(
1
), pp.
145
154
.
8.
Jiang
,
X.
,
Snook
,
K.
,
Hackengerber
,
W.
,
Yuan
,
J.
,
Cheng
,
A.
,
Schafer
,
M.
, and
Geng
,
X.
,
2007
, “
4F-5 PC-MUT Arrays for Ophthalmologic Ultrasound
,”
Ultrasonics Symposium
(
IUS
), New York, Oct. 28–31, pp.
309
312
.https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4409572
9.
Turnbull
,
D. H.
,
Starkoski
,
B. G.
,
Harasiewicz
,
K. A.
,
Semple
,
J. L.
,
From
,
L.
,
Gupta
,
A. K.
,
Sauder
,
D. N.
, and
Foster
,
F. S.
,
1995
, “
A 40–100 MHz B-Scan Ultrasound Backscatter Microscope for Skin Imaging
,”
Ultrasound Med. Biol.
,
21
(
1
), pp.
79
88
.
10.
Foster
,
F.
,
Zhang
,
M.
,
Zhou
,
Y.
,
Liu
,
G.
,
Mehi
,
J.
,
Cherin
,
E.
,
Harasiewicz
,
K. A.
,
Starkoski
,
B. G.
,
Zan
,
L.
,
Knapik
,
D. A.
, and
Adamson
,
S. L.
,
2002
, “
A New Ultrasound Instrument for In Vivo Microimaging of Mice
,”
Ultrasound Med. Biol.
,
28
(
9
), pp.
1165
1172
.
11.
Mintz
,
G. S.
,
Nissen
,
S. E.
,
Anderson
,
W. D.
,
Bailey
,
S. R.
,
Erbel
,
R.
,
Fitzgerald
,
P. J.
,
Pinto
,
F. J.
,
Rosenfield
,
K.
,
Siegel
,
R. J.
,
Tuzcu
,
E. M.
, and
Yock
,
P. G.
,
2001
, “
American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS) 33: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents Developed in Collaboration With the European Society of Cardiology Endorsed by the Society of Cardiac Angiography and Interventions
,”
J. Am. Coll. Cardiol.
,
37
(
5
), pp.
1478
1492
.
12.
Donnell
,
M. O.
,
Eberle
,
M.
,
Stephens
,
D.
,
Litzza
,
J.
,
Vicente
,
K. S.
, and
Shapo
,
B.
,
1997
, “
Synthetic Phased Arrays for Intraluminal Imaging of Coronary Arteries
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
44
(
3
), pp.
714
721
.
13.
Geng
,
X.
, and
Zhang
,
Q. M.
,
1999
, “
Resonance Modes and Losses in 1-3 Piezocomposites for Ultrasonic Transducer Applications
,”
J. Appl. Phys.
,
85
(
3
), pp.
1342
1350
.
14.
Li
,
S.
,
Jiang
,
X.
,
Tian
,
J.
, and
Han
,
P.
,
2013
, “
Development of Dual-Layer Micromachined Composite Transducers for Broadband Ultrasound Imaging
,”
Ultrasonics Symposium
(
IUS
), Prague, Czech Republic, July 21–25, pp.
667
670
.http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6725284&isnumber=6724747
15.
Cannata
,
J. M.
,
Ritter
,
T.
,
Chen
,
W.-H.
,
Silverman
,
R. H.
, and
Shung
,
K. K.
,
2003
, “
Design of Efficient, Broadband Single-Element (20-80 MHz) Ultrasonic Transducers for Medical Imaging Applications
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
, pp.
1548
1557
.
16.
Zhang
,
S.
,
Li
,
F.
,
Jiang
,
X.
,
Kim
,
J.
,
Luo
,
J.
, and
Geng
,
X.
,
2015
, “
Advantages and Challenges of Relaxor-PbTiO 3 Ferroelectric Crystals for Electroacoustic Transducers—A Review
,”
Prog. Mater. Sci.
,
68
, pp.
1
66
.
17.
Smith
,
W. A.
,
1989
, “
The Role of Piezocomposites in Ultrasonic Transducers
,”
Ultrasonics Symposium
(
IUS
), Montreal, QC, Canada, Oct. 3–6, pp.
755
766
.
18.
Zhang
,
Y.
,
Zhao
,
X.
,
Wang
,
W.
,
Ren
,
B.
,
Liu
,
D. A.
, and
Luo
,
H.
,
2011
, “
Fabrication of PIMNT/Epoxy 1-3 Composites and Ultrasonic Transducer for Nondestructive Evaluation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
, pp.
1774
1781
.
19.
Reynolds
,
P.
,
Hyslop
,
J.
, and
Hayward
,
G.
,
2003
, “
Analysis of Spurious Resonances in Single and Multi-Element Piezocomposite Ultrasonic Transducers
,” Ultrasonics Symposium (
IUS
), Honolulu, HI, Oct. 5–8, pp.
1650
1653
.
20.
Cheng
,
K. C.
,
Chan
,
H. L.
,
Choy
,
C. L.
,
Yin
,
Q.
,
Luo
,
H.
, and
Yin
,
Z.
,
2003
, “
Single Crystal PMN-0.33 PT/Epoxy 1-3 Composites for Ultrasonic Transducer Applications
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
9
), pp.
1177
1183
.
21.
Gururaja
,
T.
,
Schulze
,
W. A.
,
Cross
,
L. E.
,
Newnham
,
R. E.
,
Auld
,
B. A.
, and
Wang
,
Y. J.
,
1985
, “
Piezoelectric Composite Materials for Ultrasonic Transducer Applications—Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites
,”
IEEE Trans. Sonics Ultrason.
,
32
(
4
), pp.
481
498
.
22.
Liu
,
R.
,
Harasiewicz
,
K. A.
, and
Foster
,
F. S.
,
2001
, “
Interdigital Pair Bonding for High Frequency (20-50 MHz) Ultrasonic Composite Transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
48
, pp.
299
306
.
23.
Ritter
,
T.
,
Shrout
,
T. R.
,
Tutwiler
,
R.
, and
Shung
,
K. K.
,
2002
, “
A 30-MHz Piezo-Composite Ultrasound Array for Medical Imaging Applications
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
49
(
2
), pp.
217
230
.
24.
Safari
,
A.
,
Janas
,
V.
, and
Panda
,
R. K.
,
1996
, “
Fabrication of Fine-Scale 1-3 Pb (Zrx, Ti1-x) O3/Ceramic/Polymer Composites Using a Modified Lost Mold Method
,”
Symposium on Smart Structures and Materials
, pp.
251
262
.
25.
Jiang
,
X.
,
Snook
,
K.
,
Cheng
,
A.
,
Hackenberger
,
W.
, and
Geng
,
X.
,
2008
, “
Micromachined PMN-PT Single Crystal Composite Transducers–15–75 MHz PC-MUT
,”
Ultrasonics Symposium
(
IUS
), Beijing, China, Nov. 2–5, pp.
164
167
.
26.
Liu
,
C.
,
Djuth
,
F.
,
Li
,
X.
,
Chen
,
R.
,
Zhou
,
Q.
, and
Shung
,
K. K.
,
2012
, “
Micromachined High Frequency PMN-PT/Epoxy 1–3 Composite Ultrasonic Annular Array
,”
Ultrasonics
,
52
(
4
), pp.
497
502
.
27.
Li
,
X.
,
Ma
,
T.
,
Tian
,
J.
,
Han
,
P.
,
Zhou
,
Q.
, and
Shung
,
K. K.
,
2014
, “
Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
61
(
7
), pp.
1171
1178
.
28.
Liu
,
C.
,
Djuth
,
F. T.
,
Zhou
,
Q.
, and
Shung
,
K. K.
,
2013
, “
Micromachining Techniques in Developing High-Frequency Piezoelectric Composite Ultrasonic Array Transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
60
, pp.
2615
2625
.
29.
Cummins
,
T.
,
Eliahoo
,
P.
, and
Shung
,
K. K.
,
2016
, “
High-Frequency Ultrasound Array Designed for Ultrasound-Guided Breast Biopsy
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
63
(
6
), pp.
817
827
.
30.
Zhang
,
R.
,
Jiang
,
B.
, and
Cao
,
W.
,
2001
, “
Elastic, Piezoelectric, and Dielectric Properties of Multidomain 0.67 Pb (Mg 1/3 Nb 2/3) O 3–0.33 PbTiO 3 Single Crystals
,”
J. Appl. Phys.
,
90
, pp.
3471
3475
.
31.
Selfridge
,
A.
,
Kino
,
G.
, and
Khuri-Yakub
,
B.
,
1980
, “
A Theory for the Radiation Pattern of a Narrow-Strip Acoustic Transducer
,”
Appl. Phys. Lett.
,
37
(
1
), pp.
35
36
.
32.
Jiang
,
X.
,
Snook
,
K.
,
Walker
,
T.
,
Portune
,
A.
,
Haber
,
R.
,
Geng
,
X.
,
Welter
,
J.
, and
Hackenberger
,
W. S.
,
2008
, “
Single Crystal Piezoelectric Composite Transducers for Ultrasound NDE Applications
,”
15th International Symposium on: Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring
, p.
69340D
.
33.
Jiang
,
X.
,
Snook
,
K.
,
Hackenberger
,
W. S.
, and
Geng
,
X.
,
2007
, “
Single Crystal Piezoelectric Composites for Advanced NDT Ultrasound
,”
14th International Symposium on: Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring
, p.
65310F
.
34.
Jiang
,
X.
,
Yuan
,
J. R.
,
Cheng
,
A.
,
Snook
,
K.
,
Cao
,
P. J.
,
Rehrig
,
P. W.
, and
Hackenberger
,
W. S.
,,
2006
, “
5I-1 Microfabrication of Piezoelectric Composite Ultrasound Transducers (PC-MUT)
,”
Ultrasonics Symposium
(
IUS
), Vancouver, BC, Canada, Oct. 2–6, pp.
922
925
35.
Yuan
,
J. R.
,
Jiang
,
X.
,
Cao
,
P.-J.
,
Sadaka
,
A.
,
Bautista
,
R.
,
Snook
,
K.
, and
Rehrig
,
P. W.
,
2006
, “
5C-5 High Frequency Piezo Composites Microfabricated Ultrasound Transducers for Intravascular Imaging
,”
Ultrasonics Symposium
, pp.
264
268
.
36.
Meitzler
,
A.
,
Tiersten
,
H.
,
Warner
,
A.
,
Berlincourt
,
D.
,
Couqin
,
G.
, and
Welsh
,
F.
, III
,
1988
, “
IEEE Standard on Piezoelectricity
,”
IEEE
, New York.
37.
Li
,
S.
,
Jiang
,
X.
,
Tian
,
J.
,
Han
,
P.
, and
Zhang
,
C.
,
2015
, “
A PMN-PT Micromachined 1–3 Composite Circular Array for IVUS
,”
IEEE International Ultrasonics Symposium
(
IUS
), Taipei, Taiwan, Oct. 21–24, pp.
1
4
.
38.
Krimholtz
,
R.
,
Leedom
,
D. A.
, and
Matthaei
,
G. L.
,
1970
, “
New Equivalent Circuits for Elementary Piezoelectric Transducers
,”
Electron. Lett.
,
6
(
13
), pp.
398
399
.
39.
Lockwood
,
G. R.
,
Turnbull
,
D. H.
, and
Foster
,
F. S.
,
1994
, “
Fabrication of High Frequency Spherically Shaped Ceramic Transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
41
(
2
), pp.
231
235
.
40.
O'Donnell
,
M.
, and
Thomas
,
L.
,
1992
, “
Efficient Synthetic Aperture Imaging From a Circular Aperture With Possible Application to Catheter-Based Imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
39
(
3
), pp.
366
380
.
41.
Tian
,
J.
,
Meneou
,
K.
,
Stone
,
B.
, and
Han
,
P.
,
2010
, “
Piezoelectric Crystal Composite for High Frequency Ultrasound Application
,”
Ultrasonics Symposium
(
IUS
), San Diego, CA, Oct. 11–14, pp.
65
67
.
42.
Smith
,
W. A.
, and
Auld
,
B. A.
,
1991
, “
Modeling 1-3 Composite Piezoelectrics: Thickness-Mode Oscillations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
38
(
1
), pp.
40
47
.
43.
Cannata
,
J. M.
,
Williams
,
J. A.
,
Zhou
,
Q.
,
Ritter
,
T. A.
, and
Shung
,
K. K.
,
2006
, “
Development of a 35-MHz Piezo-Composite Ultrasound Array for Medical Imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
53
, pp.
224
236
.
44.
Ma
,
J.
,
Martin
,
K. H.
,
Dayton
,
P. A.
, and
Jiang
,
X.
,
2014
, “
A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for Contrast-Enhanced Acoustic Angiography and Molecular Imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
61
(
5
), pp.
870
880
.
45.
Wang
,
Z.
,
Martin
,
K. H.
,
Huang
,
W.
,
Dayton
,
P. A.
, and
Jiang
,
X.
,
2016
, “
Contrast Enhanced Superharmonic Imaging for Acoustic Angiography Using Reduced Form-Factor Lateral Mode Transmitters for Intravascular and Intracavity Applications
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
64
(
2
), pp.
311
319
.
You do not currently have access to this content.