Vimentin intermediate filaments (IFs) link to desmosomes (intercellular junctions) on the membrane and dense bodies in the cytoplasm, which provides a structural base for intercellular and intracellular force transmission in smooth muscle. There is evidence to suggest that the vimentin framework plays an important role in mediating smooth muscle mechanical properties such as tension and contractile responses. Contractile activation induces vimentin phosphorylation at Ser-56 and vimentin network reorientation, facilitating contractile force transmission among and within smooth muscle cells. p21-activated kinase 1 and polo-like kinase 1 catalyze vimentin phosphorylation at Ser-56, whereas type 1 protein phosphatase dephosphorylates vimentin at this residue. Vimentin filaments are also involved in other cell functions including migration and nuclear positioning. This review recapitulates our current knowledge how the vimentin network modulates mechanical and biological properties of smooth muscle.

References

References
1.
Tang
,
D. D.
,
2008
, “
Invited Review: Intermediate Filaments in Smooth Muscle
,”
Am. J. Physiol.: Cell Physiol.
,
294
(
4
), pp.
C869
C878
.
2.
Delva
,
E.
,
Tucker
,
D. K.
, and
Kowalczyk
,
A. P.
,
2009
, “
The Desmosome
,”
Cold Spring Harbor Perspect. Biol.
,
1
(
2
), p.
a002543
.
3.
Wang
,
R.
,
Li
,
Q. F.
,
Anfinogenova
,
Y.
, and
Tang
,
D. D.
,
2007
, “
Dissociation of Crk-Associated Substrate From the Vimentin Network Is Regulated by p21-Activated Kinase on ACh Activation of Airway Smooth Muscle
,”
Am. J. Physiol.: Lung Cell. Mol. Physiol.
,
292
(
1
), pp.
L240
L248
.
4.
Wang
,
R.
,
Li
,
Q.
, and
Tang
,
D. D.
,
2006
, “
Role of Vimentin in Smooth Muscle Force Development
,”
AJP Cell Physiol.
,
291
(
3
), pp.
C483
C489
.
5.
Tang
,
D. D.
,
2018
, “
The Dynamic Actin Cytoskeleton in Smooth Muscle
,”
Adv. Pharmacol.
,
81
, pp.
1
38
.
6.
Tang
,
D. D.
,
2015
, “
Critical Role of Actin-Associated Proteins in Smooth Muscle Contraction, cell Proliferation, Airway Hyper-Responsiveness and Airway Remodeling
,”
Respir. Res.
,
16
, p.
134
.
7.
Gunst
,
S. J.
, and
Zhang
,
W.
,
2008
, “
Actin Cytoskeletal Dynamics in Smooth Muscle: A New Paradigm for the Regulation of Smooth Muscle Contraction
,”
AJP: Cell Physiol.
,
295
(
3
), pp.
C576
C587
.
8.
Wang
,
R.
,
Cleary
,
R. A.
,
Wang
,
T.
,
Li
,
J.
, and
Tang
,
D. D.
,
2014
, “
The Association of Cortactin With Profilin-1 is Critical for Smooth Muscle Contraction
,”
J. Biol. Chem.
,
289
(
20
), pp.
14157
14169
.
9.
Wang
,
T.
,
Cleary
,
R. A.
,
Wang
,
R.
, and
Tang
,
D. D.
,
2013
, “
Role of the Adapter Protein Abi1 in Actin-Associated Signaling and Smooth Muscle Contraction
,”
J. Biol. Chem.
,
288
(
28
), pp.
20713
20722
.
10.
Henrion
,
D.
,
Terzi
,
F.
,
Matrougui
,
K.
,
Duriez
,
M.
,
Boulanger
,
C. M.
,
Colucci-Guyon
,
E.
,
Babinet
,
C.
,
Briand
,
P.
,
Friedlander
,
G.
,
Poitevin
,
P.
, and
Levy
,
B. I.
,
1997
, “
Impaired Flow-Induced Dilation in Mesenteric Resistance Arteries From Mice Lacking Vimentin
,”
J. Clin. Invest.
,
100
(
11
), pp.
2909
2914
.
11.
Li
,
J.
,
Wang
,
R.
,
Gannon
,
O. J.
,
Rezey
,
A. C.
,
Jiang
,
S.
,
Gerlach
,
B. D.
,
Liao
,
G.
, and
Tang
,
D. D.
,
2016
, “
Polo-Like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle
,”
J. Biol. Chem.
,
291
(
45
), pp.
23693
23703
.
12.
Eckes
,
B.
,
Dogic
,
D.
,
Colucci-Guyon
,
E.
,
Wang
,
N.
,
Maniotis
,
A.
,
Ingber
,
D.
,
Merckling
,
A.
,
Langa
,
F.
,
Aumailley
,
M.
,
Delouvee
,
A.
,
Koteliansky
,
V.
,
Babinet
,
C.
, and
Krieg
,
T.
,
1998
, “
Impaired Mechanical Stability, Migration and Contractile Capacity in Vimentin-Deficient Fibroblasts
,”
J. Cell Sci.
,
111
(
Pt. 13
), pp.
1897
1907
.http://jcs.biologists.org/content/111/13/1897
13.
Gladilin
,
E.
,
Gonzalez
,
P.
, and
Eils
,
R.
,
2014
, “
Dissecting the Contribution of Actin and Vimentin Intermediate Filaments to Mechanical Phenotype of Suspended Cells Using High-Throughput Deformability Measurements and Computational Modeling
,”
J. Biomech.
,
47
(
11
), pp.
2598
2605
.
14.
Pollard
,
T. D.
,
2004
, “
Intermediate Filaments
,”
Cell Biology
, Elsevier, New York, pp.
595
603
.
15.
Li
,
Q. F.
,
Spinelli
,
A. M.
,
Wang
,
R.
,
Anfinogenova
,
Y.
,
Singer
,
H. A.
, and
Tang
,
D. D.
,
2006
, “
Critical Role of Vimentin Phosphorylation at Ser-56 by p21-Activated Kinase in Vimentin Cytoskeleton Signaling
,”
J. Biol. Chem.
,
281
(
45
), pp.
34716
34724
.
16.
Tang
,
D. D.
,
Bai
,
Y.
, and
Gunst
,
S. J.
,
2005
, “
Silencing of p21-Activated Kinase Attenuates Vimentin Phosphorylation on Ser-56 and Reorientation of the Vimentin Network During Stimulation of Smooth Muscle Cells by 5-Hydroxytryptamine
,”
Biochem. J.
,
388
(
3
), pp.
773
783
.
17.
Liu
,
T.
,
Ghamloush
,
M. M.
,
Aldawood
,
A.
,
Warburton
,
R.
,
Toksoz
,
D.
,
Hill
,
N. S.
,
Tang
,
D. D.
, and
Kayyali
,
U. S.
,
2014
, “
Modulating Endothelial Barrier Function by Targeting Vimentin Phosphorylation
,”
J. Cell. Physiol.
,
229
(
10
), pp.
1484
1493
.
18.
Tang
,
D. D.
,
2009
, “
p130 Crk-Associated Substrate (CAS) in Vascular Smooth Muscle
,”
J. Cardiovasc. Pharmacol. Ther.
,
14
(
2
), pp.
89
98
.
19.
Anfinogenova
,
Y.
,
Wang
,
R.
,
Li
,
Q. F.
,
Spinelli
,
A. M.
, and
Tang
,
D. D.
,
2007
, “
Abl Silencing Inhibits CAS-Mediated Process and Constriction in Resistance Arteries
,”
Circ. Res.
,
101
(
4
), pp.
420
428
.
20.
Jia
,
L.
, and
Tang
,
D. D.
,
2010
, “
Abl Activation Regulates the Dissociation of CAS From Cytoskeletal Vimentin by Modulating CAS Phosphorylation in Smooth Muscle
,”
AJP: Cell Physiol.
,
299
(
3
), pp.
C630
C637
.
21.
Wang
,
Y.
,
Rezey
,
A. C.
,
Wang
,
R.
, and
Tang
,
D. D.
,
2018
, “
Role and Regulation of Abelson Tyrosine Kinase in Crk-Associated Substrate/Profilin-1 Interaction and Airway Smooth Muscle Contraction
,”
Respir. Res.
,
19
(
1
), p.
4
.
22.
Li
,
Q. F.
,
Spinelli
,
A. M.
, and
Tang
,
D. D.
,
2009
, “
Cdc42GAP, Reactive Oxygen Species, and the Vimentin Network
,”
AJP: Cell Physiol.
,
297
(
2
), pp.
C299
C309
.
23.
Wang
,
T.
,
Wang
,
R.
,
Cleary
,
R. A.
,
Gannon
,
O. J.
, and
Tang
,
D. D.
,
2015
, “
Recruitment of Beta-Catenin to N-Cadherin is Necessary for Smooth Muscle Contraction
,”
J. Biol. Chem.
,
290
(
14
), pp.
8913
8924
.
24.
Li
,
J.
,
Wang
,
R.
, and
Tang
,
D. D.
,
2016
, “
Vimentin Dephosphorylation at Ser-56 is Regulated by Type 1 Protein Phosphatase in Smooth Muscle
,”
Respir. Res.
,
17
(
1
), p.
91
.
25.
Chang
,
L.
, and
Goldman
,
R. D.
,
2004
, “
Intermediate Filaments Mediate Cytoskeletal Crosstalk
,”
Nat. Rev. Mol. Cell Biol.
,
5
(
8
), pp.
601
613
.
26.
Gan
,
Z.
,
Ding
,
L.
,
Burckhardt
,
C. J.
,
Lowery
,
J.
,
Zaritsky
,
A.
,
Sitterley
,
K.
,
Mota
,
A.
,
Costigliola
,
N.
,
Starker
,
C. G.
,
Voytas
,
D. F.
,
Tytell
,
J.
,
Goldman
,
R. D.
, and
Danuser
,
G.
,
2016
, “
Vimentin Intermediate Filaments Template Microtubule Networks to Enhance Persistence in Cell Polarity and Directed Migration
,”
Cell Syst.
,
3
(
3
), pp.
252
263
.
27.
Paul
,
R. J.
,
Bowman
,
P. S.
, and
Kolodney
,
M. S.
,
2000
, “
Effects of Microtubule Disruption on Force, Velocity, Stiffness and [Ca(2+)](i) in Porcine Coronary Arteries
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
279
(
5
), pp.
H2493
H2501
.
28.
Zhang
,
D.
,
Jin
,
N.
,
Rhoades
,
R. A.
,
Yancey
,
K. W.
, and
Swartz
,
D. R.
,
2000
, “
Influence of Microtubules on Vascular Smooth Muscle Contraction
,”
J. Muscle Res. Cell Motil.
,
21
(
3
), pp.
293
300
.
29.
Marganski
,
W. A.
,
Gangopadhyay
,
S. S.
,
Je
,
H. D.
,
Gallant
,
C.
, and
Morgan
,
K. G.
,
2005
, “
Targeting of a Novel Ca+2/Calmodulin-Dependent Protein Kinase II Is Essential for Extracellular Signal-Regulated Kinase-Mediated Signaling in Differentiated Smooth Muscle Cells
,”
Circ. Res.
,
97
(
6
), pp.
541
549
.
30.
Leung
,
W. K.
,
Ching
,
A. K.
, and
Wong
,
N.
,
2011
, “
Phosphorylation of Caldesmon by PFTAIRE1 Kinase Promotes Actin Binding and Formation of Stress Fibers
,”
Mol. Cell. Biochem.
,
350
(
1–2
), pp.
201
206
.
31.
Zhao
,
Z. S.
, and
Manser
,
E.
,
2012
, “
PAK Family Kinases: Physiological Roles and Regulation
,”
Cell. Logist.
,
2
(
2
), pp.
59
68
.
32.
Li
,
Q. F.
, and
Tang
,
D. D.
,
2009
, “
Role of p47(phox) in Regulating Cdc42GAP, Vimentin, and Contraction in Smooth Muscle Cells
,”
Am. J. Physiol.: Cell Physiol.
,
297
(
6
), pp.
C1424
C1433
.
33.
Petronczki
,
M.
,
Lenart
,
P.
, and
Peters
,
J. M.
,
2008
, “
Polo on the Rise-From Mitotic Entry to Cytokinesis With Plk1
,”
Dev. Cell.
,
14
(
5
), pp.
646
659
.
34.
Barr
,
F. A.
,
Sillje
,
H. H.
, and
Nigg
,
E. A.
,
2004
, “
Polo-Like Kinases and the Orchestration of Cell Division
,”
Nat. Rev. Mol. Cell Biol.
,
5
(
6
), pp.
429
440
.
35.
Amrani
,
Y.
, and
Panettieri
,
R. A.
,
2003
, “
Airway Smooth Muscle: Contraction and Beyond
,”
Int. J. Biochem. Cell Biol.
,
35
(
3
), pp.
272
276
.
36.
Cleary
,
R. A.
,
Wang
,
R.
,
Wang
,
T.
, and
Tang
,
D. D.
,
2013
, “
Role of Abl in Airway Hyper-Responsiveness and Airway Remodeling
,”
Respir. Res.
,
14
(
1
), p.
105
.
37.
Tang
,
D. D.
, and
Gerlach
,
B. D.
,
2017
, “
The Roles and Regulation of the Actin Cytoskeleton, Intermediate Filaments and Microtubules in Smooth Muscle Cell Migration
,”
Respir. Res.
,
18
(
1
), p.
54
.
38.
Pollard
,
T. D.
, and
Borisy
,
G. G.
,
2003
, “
Cellular Motility Driven by Assembly and Disassembly of Actin Filaments
,”
Cell
,
112
(
4
), pp.
453
465
.
39.
Liao
,
G.
,
Wang
,
R.
,
Rezey
,
A. C.
,
Gerlach
,
B. D.
, and
Tang
,
D. D.
,
2018
, “
MicroRNA miR-509 Regulates ERK1/2, the Vimentin Network, and Focal Adhesions by Targeting Plk1
,”
Sci. Rep.
,
8
(
1
), p.
12635
.
40.
Gregor
,
M.
,
Osmanagic-Myers
,
S.
,
Burgstaller
,
G.
,
Wolfram
,
M.
,
Fischer
,
I.
,
Walko
,
G.
,
Resch
,
G. P.
,
Jorgl
,
A.
,
Herrmann
,
H.
, and
Wiche
,
G.
,
2014
, “
Mechanosensing Through Focal Adhesion-Anchored Intermediate Filaments
,”
FASEB J.
,
28
(
2
), pp.
715
729
.
41.
Tarbet
,
H. J.
,
Dolat
,
L.
,
Smith
,
T. J.
,
Condon
,
B. M.
,
O'Brien
,
E. T.
,
Valdivia
,
R. H.
III
, and
Boyce
,
M.
,
2018
, “
Site-Specific Glycosylation Regulates the Form and Function of the Intermediate Filament Cytoskeleton
,”
eLife
,
7
, p. e31807.
42.
Thaiparambil
,
J. T.
,
Bender
,
L.
,
Ganesh
,
T.
,
Kline
,
E.
,
Patel
,
P.
,
Liu
,
Y.
,
Tighiouart
,
M.
,
Vertino
,
P. M.
,
Harvey
,
R. D.
,
Garcia
,
A.
, and
Marcus
,
A. I.
,
2011
, “
Withaferin a Inhibits Breast Cancer Invasion and Metastasis at Sub-Cytotoxic Doses by Inducing Vimentin Disassembly and Serine 56 Phosphorylation
,”
Int. J. Cancer
,
129
(
11
), pp.
2744
2755
.
43.
Tang
,
D. D.
, and
Anfinogenova
,
Y.
,
2008
, “
Physiologic Properties and Regulation of the Actin Cytoskeleton in Vascular Smooth Muscle
,”
J. Cardiovasc. Pharmacol. Ther.
,
13
(
2
), pp.
130
140
.
44.
Helfand
,
B. T.
,
Mendez
,
M. G.
,
Murthy
,
S. N.
,
Shumaker
,
D. K.
,
Grin
,
B.
,
Mahammad
,
S.
,
Aebi
,
U.
,
Wedig
,
T.
,
Wu
,
Y. I.
,
Hahn
,
K. M.
,
Inagaki
,
M.
,
Herrmann
,
H.
, and
Goldman
,
R. D.
,
2011
, “
Vimentin Organization Modulates the Formation of Lamellipodia
,”
Mol. Biol. Cell
,
22
(
8
), pp.
1274
1289
.
45.
Deng
,
M.
,
Mohanan
,
S.
,
Polyak
,
E.
, and
Chacko
,
S.
,
2007
, “
Caldesmon is Necessary for Maintaining the Actin and Intermediate Filaments in Cultured Bladder Smooth Muscle Cells
,”
Cell Motil. Cytoskeleton
,
64
(
12
), pp.
951
965
.
46.
Lanier
,
M. H.
,
Kim
,
T.
, and
Cooper
,
J. A.
,
2015
, “
CARMIL2 is a Novel Molecular Connection Between Vimentin and Actin Essential for Cell Migration and Invadopodia Formation
,”
Mol. Biol. Cell
,
26
(
25
), pp.
4577
4588
.
47.
Etienne-Manneville
,
S.
,
2018
, “
Cytoplasmic Intermediate Filaments in Cell Biology
,”
Annu. Rev. Cell Dev. Biol.
,
34
, pp. 1–28.
48.
Keeling
,
M. C.
,
Flores
,
L. R.
,
Dodhy
,
A. H.
,
Murray
,
E. R.
, and
Gavara
,
N.
,
2017
, “
Actomyosin and Vimentin Cytoskeletal Networks Regulate Nuclear Shape, Mechanics and Chromatin Organization
,”
Sci. Rep.
,
7
(
1
), p.
5219
.
You do not currently have access to this content.