Infrared (IR) breast thermography has been associated with the early detection of breast cancer (BC). However, findings in previous studies have been inconclusive. The upright position of subjects during imaging introduces errors in interpretation, because it blocks the optical access in the inframammary fold region and alters the temperature due to contact between breast and chest wall. These errors can be avoided by imaging breasts in prone position. Although the numerical simulations provide insight into thermal characteristics of the female breast with a tumor, most simulations in the past have used cubical and hemispherical breast models. We hypothesize that a breast model with the actual breast shape will provide true thermal characteristics that are useful in tumor detection. A digital breast model in prone position is developed to generate the surface temperature profiles for breasts with tumors. The digital breast model is generated from sequential magnetic resonance imaging (MRI) images and simulations are performed using finite volume method employing Pennes bioheat equation. We investigated the effect of varying the tumor metabolic activity on the surface temperature profile. We compared the surface temperature profile for various tumor metabolic activities with a case without tumor. The resulting surface temperature rise near the location of the tumor was between 0.665 and 1.023 °C, detectable using modern IR cameras. This is the first time that numerical simulations are conducted in a model with the actual breast shape in prone position to study the surface temperature changes induced by BC.

References

1.
Siegel
,
R. L.
,
Miller
,
K. D.
, and
Jemal
,
A.
,
2016
, “
Cancer Statistics, 2016
,”
Ca Cancer J. Clin.
,
66
(
1
), pp.
7
30
.
2.
Howlader
,
N.
,
Noone
,
A. M.
,
Krapcho
,
M.
,
Neyman
,
N.
,
Aminou
,
R.
,
Altekruse
,
S. F.
, and
Mariotto
,
A.
,
2013
, “SEER Cancer Statistics Review, 1975-2009 (Vintage 2009 Populations),” National Cancer Institute. Bethesda, MD, accessed Sept. 20, 2018, https://seer.cancer.gov/archive/csr/1975_2009_pops09/ results_merged/sect_04_breast.pdf
3.
Mary
,
B. B.
,
Harris
,
R.
, and
Fletcher
,
W. S.
,
1999
, “Does This Patient Have Breast Cancer?: The Screening Clinical Breast Examination: Should it be Done? How?,”
JAMA.
,
282
(13), pp. 1270–1280.
4.
Brain
,
K.
,
Norman
,
P.
,
Gray
,
J.
, and
Mansel
,
R.
, 1999, “Anxiety and Adherence to Breast Self-Examination in Women With Family History of Breast Cancer,”
Psychosom. Med.
,
61
(2), pp.
181
187
.
5.
Nelson
,
H. D.
,
Tyne
,
K.
,
Naik
,
A.
,
Bougatsos
,
C.
,
Chan
,
B.
,
Nygren
,
P.
, and
Humphrey
,
L.
,
2009
, “Screening for Breast Cancer: Systematic Evidence Review Update for the US Preventive Services Task Force,” U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews. Agency for Healthcare Research and Quality (US), Rockville, MD.
6.
Narod
,
S. A.
,
Lubinski
,
J.
,
Ghadirian
,
P.
,
Lynch
,
H. T.
,
Moller
,
P.
,
Foulkes
,
W. D.
,
Rosen
,
B.
,
Kim-Sing
,
C.
,
Isaacs
,
C.
,
Domcheck
,
S.
, and
Sun
,
P.
,
2006
, “
Screening Mammography and Risk of Breast Cancer in BRCA1 and BRCA2 Mutation Carriers: A Case-Control Study
,”
Lancet Oncol.
,
7
(
5
), pp.
402
406
.
7.
Friedewald
,
S. M.
,
Rafferty
,
E. A.
,
Rose
,
S. L.
,
Durand
,
M. A.
,
Plecha
,
D. M.
,
Greenberg
,
J. S.
,
Hayes
,
M. K.
,
Copit
,
D. S.
,
Carlson
,
K. L.
,
Cink
,
T. M.
,
Barke
,
L. D.
,
Greer
,
L. N.
,
Miller
,
D. P.
, and
Conant
,
E. F.
,
2014
, “
Breast Cancer Screening Using Tomosynthesis in Combination With Digital Mammography
,”
JAMA
,
311
(
24
), pp.
2499
2507
.
8.
Kuhl
,
C. K.
,
Schrading
,
S.
,
Leutner
,
C. C.
,
Morakkabati-Spitz
,
N.
,
Wardelmann
,
E.
,
Fimmers
,
R.
,
Kuhn
,
W.
, and
Schild
,
H. H.
,
2005
, “
Mammography, Breast Ultrasound, and Magnetic Resonance Imaging for Surveillance of Women at High Familial Risk for Breast Cancer
,”
J. Clin. Oncol.
,
23
(
33
), pp.
8469
8476
.
9.
Lahiri
,
B. B.
,
Bagavathiappan
,
S.
,
Jayakumar
,
T.
, and
Philip
,
J.
,
2012
, “
Medical Applications of Infrared Thermography: A Review
,”
Infrared Phys. Technol.
,
55
(
4
), pp.
221
235
.
10.
Watmough
,
D. J.
, and
Oliver
,
R.
,
1969
, “
Wavelength Dependence of Skin Emissivity
,”
Phys. Med. Biol.
,
14
(
2
), p.
201
.
11.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
12.
Yahara
,
T.
,
Koga
,
T.
,
Yoshida
,
S.
,
Nakagawa
,
S.
,
Deguchi
,
H.
, and
Shirouzu
,
K.
,
2016
, “
Relationship Between Microvessel Density and Thermographic Hot Areas in Breast Cancer
,”
Surg. Today
,
33
(
4
), pp.
243
248
.
13.
Gautherie
,
M.
,
1983
, “
Thermobiological Assessment of Benign and Malignant Breast Diseases
,”
Am. J. Obstet. Gynecol.
,
147
(
8
), pp.
861
869
.
14.
Guidi
,
A. J.
, and
Schnitt
,
S. J.
,
1996
, “
Angiogenesis in Preinvasive Lesions of the Breast
,”
Breast J.
,
2
(
6
), pp.
364
369
.
15.
Gautherie
,
M.
, and
Gros
,
C. M.
,
1980
, “
Breast Thermography and Cancer Risk Prediction
,”
Cancer
,
45
(
1
), pp.
51
56
.
16.
Kandlikar
,
S. G.
,
Perez-Raya
,
I.
,
Raghupathi
,
P. A.
,
Gonzalez-Hernandez
,
J. L.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2017
, “
Infrared Imaging Technology for Breast Cancer Detection—Current Status, Protocols and New Directions
,”
Int. J. Heat Mass Transfer
,
108
(
Part B
), pp.
2303
2320
.
17.
Kennedy
,
D. A.
,
Lee
,
T.
, and
Seely
,
D.
,
2009
, “
A Comparative Review of Thermography as a Breast Cancer Screening Technique
,”
Integr. Cancer Ther.
,
8
(
1
), pp.
9
16
.
18.
Bezerra
,
L. A.
,
Oliveira
,
M. M.
,
Rolim
,
T. L.
,
Conci
,
A.
,
Santos
,
F. G. S.
,
Lyra
,
P. R. M.
, and
Lima
,
R. C. F.
,
2013
, “
Estimation of Breast Tumor Thermal Properties Using Infrared Images
,”
Signal Process.
,
93
(
10
), pp.
2851
2863
.
19.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
85
(
1
), pp.
5
34
.
20.
Mital
,
M.
, and
Pidaparti
,
R. M.
,
2008
, “
Breast Tumor Simulation and Parameters Estimation Using Evolutionary Algorithms
,”
Modell. Simul. Eng.
,
2008
, p.
6
.
21.
Hatwar
,
R.
, and
Herman
,
C.
,
2017
, “
Inverse Method for Quantitative Characterisation of Breast Tumours From Surface Temperature Data
,”
Int. J. Hyperthermia
,
33
(
7
), pp.
741
757
.
22.
Das
,
K.
, and
Mishra
,
S. C.
,
2013
, “
Estimation of Tumor Characteristics in a Breast Tissue With Known Skin Surface Temperature
,”
J. Therm. Biol.
,
38
(
6
), pp.
311
317
.
23.
Amri
,
A.
,
Pulko
,
S. H.
, and
Wilkinson
,
A. J.
,
2016
, “
Potentialities of Steady-State and Transient Thermography in Breast Tumour Depth Detection: A Numerical Study
,”
Comput. Methods Programs Biomed.
,
123
, pp.
68
80
.
24.
Osman
,
M. M.
, and
Afify
,
E. M.
,
1984
, “
Thermal Modeling of the Normal Woman's Breast
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
123
130
.
25.
Osman
,
M. M.
, and
Afify
,
E. M.
,
1988
, “
Thermal Modeling of the Malignant Woman's Breast
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
269
276
.
26.
Sudharsan
,
N. M.
,
Ng
,
E. Y. K.
, and
Teh
,
S. L.
,
1999
, “
Surface Temperature Distribution of a Breast With and Without Tumour
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
187
199
.
27.
Sudharsan
,
N. M.
, and
Ng
,
E. Y. K.
,
2000
, “
Parametric Optimization for Tumour Identification: Bioheat Equation Using ANOVA and the Taguchi Method
,”
Proc. Inst. Mech. Eng., Part H
,
214
(
5
), pp.
505
512
.
28.
González
,
F. J.
,
2007
, “
Thermal Simulation of Breast Tumors
,”
Rev. Mex. Física
,
53
(
4
), pp.
323
326
.
29.
Sudharsan
,
N. M.
, and
Ng
,
E. Y. K.
,
2001
, “
Numerical Computation as a Tool to Aid Thermographic Interpretation
,”
J. Med. Eng. Technol.
,
25
(
2
), pp.
53
60
.
30.
Ng
,
E.-K.
, and
Sudharsan
,
N. M.
,
2001
, “
Effect of Blood Flow, Tumour and Cold Stress in a Female Breast: A Novel Time-Accurate Computer Simulation
,”
Proc. Inst. Mech. Eng., Part H
,
215
(
4
), pp.
393
404
.
31.
Jiang
,
L.
,
Zhan
,
W.
, and
Loew
,
M.
,
2008
, “
Combined Thermal and Elastic Modeling of the Normal and Tumorous Breast
,”
Proc. SPIE
,
6916
, p.
69161E
.
32.
Jiang
,
L.
,
Zhan
,
W.
, and
Loew
,
M. H.
,
2011
, “
Modeling Static and Dynamic Thermography of the Human Breast Under Elastic Deformation
,”
Phys. Med. Biol.
,
56
(
1
), p.
187
.
33.
Canny
,
J.
,
1986
, “
A Computational Approach to Edge Detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-8
(
6
), pp.
679
698
.
34.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
14th Annual Conference on Computer Graphics and Interactive Techniques
, New York, pp.
163
169
.
35.
Hess
,
R.
,
2007
,
The Essential Blender: Guide to 3D Creation With the Open Source Suite Blender
,
No Starch Press
,
San Francisco, CA
.
36.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
An Introduction to Computational Fluid Dynamics—The Finite Volume Method
,
Pearson Education Limited
, London, UK.
37.
Gautherie
,
M.
,
1980
, “
Thermopathology of Breast Cancer: Measurement and Analysis of In Vivo Temperature and Blood Flow
,”
Ann. N. Y. Acad. Sci.
,
335
(
1
), pp.
383
415
.
38.
Francis
,
S. V.
,
Sasikala
,
M.
,
Bhavani Bharathi
,
G.
, and
Jaipurkar
,
S. D.
,
2014
, “
Breast Cancer Detection in Rotational Thermography Images Using Texture Features
,”
Infrared Phys. Technol.
,
67
(
Suppl. C
), pp.
490
496
.
39.
Duck
,
F. A.
,
2013
,
Physical Properties of Tissues: A Comprehensive Reference Book
,
Academic Press
, Amsterdam, The Netherlands.
40.
Ng
,
E. Y.-K.
,
2009
, “
A Review of Thermography as Promising Non-Invasive Detection Modality for Breast Tumor
,”
Int. J. Therm. Sci.
,
48
(
5
), pp.
849
859
.
You do not currently have access to this content.