Treatment of vision-threating elevated intraocular pressure (IOP) for severe glaucoma may require implantation of a glaucoma drainage device (GDD) to shunt aqueous humor (AH) from the anterior chamber of the eye and lower IOP to acceptable levels between 8 and 21 mm Hg. Nonvalved GDDs (NVGDDs) cannot maintain IOP in that acceptable range during the early postoperative period and require intra-operative modifications for IOP control during the first 30 days after surgery. Other GDDs have valves to overcome this issue, but are less successful with maintaining long-term IOP. Our research goal is to improve NVGDD postoperative performance. Little rigorous research has been done to systematically analyze flow/pressure characteristics in NVGDDs. We describe an experimental system developed to assess the pressure drop for physiologic flow rates through NVGDD-like microtubes of various lengths/diameters, some with annular inserts. Experimental pressure measurements for flow through hollow microtubes are within predictive theory's limits. For instance, a 50.4 μm inner diameter microtube yields an average experimental pressure of 33.7 mm Hg, while theory predicts 31.0–64.2 mm Hg. An annular example, with 358.8 μm outside and 330.7 μm inside diameters, yields an experimental pressure of 9.6 mm Hg, within theoretical predictions of 4.2–19.2 mm Hg. These results are repeatable and consistent over 25 days, which fits the 20–35 day period needed for scar tissue formation to achieve long-term IOP control. This work introduces a novel method for controlling IOP and demonstrates an experiment to examine this over 25 days. Future efforts will study insert size and degradable inserts.

References

References
1.
Inoue
,
K.
,
2014
, “
Managing Adverse Effects of Glaucoma Medications
,”
Clin. Ophthalmol.
,
8
, pp.
903
913
.
2.
Boughton
,
B.
,
2013
,
Predictors of Failure After Laser Surgery for Glaucoma
,
Medscape
, accessed June 15, 2018, https://www.medscape.com/viewarticle/781426#vp_1
3.
Christakis
,
P. G.
,
Tsai
,
J. C.
,
Kalenak
,
J. W.
,
Zurakowski
,
D.
,
Cantor
,
L. B.
,
Kammer
,
J. A.
, and
Ahmed
,
I. I. K.
,
2013
, “
The Ahmed Versus Baerveldt Study: Three-Year Treatment Outcomes
,”
Ophthalmology
,
120
(
11
), pp.
2232
2240
.
4.
Moss
,
E. B.
, and
Trope
,
G. E.
,
2008
, “
Assessment of Closing Pressure in Silicone Ahmed Fp7 Glaucoma Valves
,”
J. Glaucoma
,
17
(
6
), pp.
489
493
.
5.
Lim
,
K. S.
,
Allan
,
B. D.
,
Lloyd
,
A. W.
,
Muir
,
A.
, and
Khaw
,
P. T.
,
1998
, “
Glaucoma Drainage Devices; past, Present, and Future
,”
Br. J. Ophthalmol.
,
82
(
9
), pp.
1083
1089
.
6.
Tong
,
L.
,
Frazao
,
K.
,
LaBree
,
L.
, and
Varma
,
R.
,
2003
, “
Intraocular Pressure Control and Complications With Two-Stage Insertion of the Baerveldt Implant
,”
Ophthalmology
,
110
(
2
), pp.
353
358
.
7.
Kansal
,
S.
,
Moster
,
M. R.
,
Kim
,
D.
,
Schmidt
,
C. M.
, Jr.
Wilson
,
R. P.
, and
Katz
,
L. J.
,
2002
, “
Effectiveness of Nonocclusive Ligature and Fenestration Used in Baerveldt Aqueous Shunts for Early Postoperative Intraocular Pressure Control
,”
J. Glaucoma.
,
11
(
1
), pp.
65
70
.
8.
Sherwood
,
M. B.
, and
Smith
,
M. F.
,
1993
, “
Prevention of Early Hypotony Associated With Molteno Implants by a New Occluding Stent Technique
,”
Ophthalmology
,
100
(
1
), pp.
85
90
.
9.
Gilbert
,
D. D.
, and
Bond
,
B.
,
2007
, “
Intraluminal Pressure Response in Baerveldt Tube Shunts: A Comparison of Modification Techniques
,”
J. Glaucoma
,
16
(
1
), pp.
62
67
.
10.
Breckenridge
,
R. R.
,
Bartholomew
,
L. R.
,
Crosson
,
C. E.
, and
Kent
,
A. R.
,
2004
, “
Outflow Resistance of the Baerveldt Glaucoma Drainage Implant and Modifications for Early Postoperative Intraocular Pressure Control
,”
J. Glaucoma
,
13
(
5
), pp.
396
399
.
11.
Brooks, S. E.
,
Davey, M. P.
,
Lee, M. B.
, and
Baerveldt, G.
, 1994, “
Modifications of the Glaucoma Drainage Implant to Prevent Early Postoperative Hypertension and Hypotony—A Laboratory Study
,”
Ophthalmic Surg.
,
25
(5), pp. 311–316.
12.
Marchini
,
G.
,
Ceruti
,
P.
,
Vizzari
,
G.
,
Toscani
,
M.
,
Amantea
,
C.
,
Tosi
,
R.
, and
Marchetti
,
P.
,
2016
, “
Long-Term Outcomes of a Modified Technique Using the Baerveldt Glaucoma Implant for the Treatment of Refractory Glaucoma
,”
J. Glaucoma
,
25
(
12
), pp.
952
958
.
13.
Emerick
,
G. T.
,
Gedde
,
S. J.
, and
Budenz
,
D. L.
,
2002
, “
Tube Fenestrations in Baerveldt Glaucoma Implant Surgery: 1-Year Results Compared With Standard Implant Surgery
,”
J. Glaucoma
,
11
(
4
), pp.
340
346
.
14.
Trible
,
J. R.
, and
Brown
,
D. B.
,
1998
, “
Occlusive Ligature and Standardized Fenestration of a Baerveldt Tube With and Without Antimetabolites for Early Postoperative Intraocular Pressure Control
,”
Ophthalmology
,
105
(
12
), pp.
2243
2250
.
15.
Hong
,
C. H.
,
Arosemena
,
A.
,
Zurakowski
,
D.
, and
Ayyala
,
R. S.
,
2005
, “
Glaucoma Drainage Devices: A Systematic Literature Review and Current Controversies
,”
Surv. Ophthalmol.
,
50
(
1
), pp.
48
60
.
16.
Molteno
,
A. C.
,
Fucik
,
M.
,
Dempster
,
A. G.
, and
Bevin
,
T. H.
,
2003
, “
Otago Glaucoma Surgery Outcome Study: Factors Controlling Capsule Fibrosis Around Molteno Implants With Histopathological Correlation
,”
Ophthalmology
,
110
(
11
), pp.
2198
2206
.
17.
Munden
,
P. M.
,
Ramani
,
A.
,
Kieweg
,
S. L.
,
Dougherty
,
R. L.
, and
Boyce
,
M.
,
2015
, “
An Experimental Model of Pressure Modulation in Baerveldt Implants to Reduce Post-Operative Hypotony
,”
Association for Research in Vision & Ophthalmology 2015 Annual Meeting
, Denver, CO, May 3–7.
18.
Lim
,
K. S.
,
Allan
,
B.
,
Khaw
,
P. T.
,
Willis
,
S.
,
Lloyd
,
A. W.
,
Muir
,
A.
,
Gard
,
P.
,
Faragher
,
R. G. A.
,
Olliff
,
C. J.
,
Hanlon
,
G. W.
,
Wong
,
L.
,
Reed
,
S.
, and
Denyer
,
S.
,
2001
, “
Experimental Flow Studies in Glaucoma Drainage Device Development
,”
Br. J. Ophthalmol.
,
85
(
10
), pp.
1231
1236
.
19.
Porter
,
J. M.
,
Krawczyk
,
C. H.
, and
Carey
,
R. F.
,
1997
, “
In Vitro Flow Testing of Glaucoma Drainage Devices
,”
Ophthalmology
,
104
(
10
), pp.
1701
1707
.
20.
Prata
,
J. A.
, Jr.
Mermoud
,
A.
,
LaBree
,
L.
, and
Minckler
,
D. S.
,
1995
, “
In Vitro and In Vivo Flow Characteristics of Glaucoma Drainage Implants
,”
Ophthalmology
,
102
(
6
), pp.
894
904
.
21.
Lim
,
K. S.
,
Wells
,
A. P.
, and
Khaw
,
P. T.
,
2002
, “
Needle Perforations of Molteno Tubes
,”
J. Glaucoma.
,
11
(
5
), pp.
434
438
.
22.
Munson
,
B. R.
,
Young
,
D. F.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2009
,
Fundamentals of Fluid Mechanics
,
6th ed.
,
Wiley
,
Hoboken, NJ
.
23.
Fitt
,
A. D.
, and
Gonzalez
,
G.
,
2006
, “
Aqueous Humour Flow in the Anterior Chamber
,”
Bull. Math. Biol.
,
68
(
1
), p.
53
.
24.
SImetric,
2015
, “
Mass, Weight, Density or Specific Gravity of Water at Various Temperatures
,”
Simetric
, London, accessed Apr. 15, 2018, https://www.simetric.co.uk/si_water.htm
25.
Ramani
,
A.
,
2015
, “
Reliable Experimental Setup to Test the Pressure Modulation of Baerveldt Implant Tubes for Reducing Post-Operative Hypotony
,” M.S. thesis, University of Kansas, Lawrence, KS.
26.
Teo
,
H. T. T.
,
2018
, “
Validation of Pressure Measuring Setup for Microscopic Tube Flow: Glaucoma Drainage Implant Application
,” M.S. thesis, University of Kansas, Lawrence, KS.
27.
Trajan Scientific and Medical,
2016
, “
Peeksil Tubing
,” Trajan, Victoria, Australia, accessed Feb. 5, 2017, http://www.sge.com/products/gc-lc-supplies/lc-supplies/lc-peeksil-tubing3
You do not currently have access to this content.