Cancerous tissues are known to possess different poroelastic properties with respect to normal tissues. Interstitial permeability is one of these properties, and it has been shown to be of diagnostic relevance for the detection of soft tissue cancers and for assessment of their treatment. In some cases, interstitial permeability of cancers has been reported to be lower than the surrounding tissue, while in other cases interstitial permeability of cancers has been reported to be higher than the surrounding tissue. We have previously reported an analytical model of a cylindrical tumor embedded in a more permeable background. In this paper, we present and analyze a poroelastic mathematical model of a tumor tissue in cylindrical coordinate system, where the permeability of the tumor tissue is assumed to be higher than the surrounding normal tissue. A full set of analytical expressions are obtained for radial displacement, strain, and fluid pressure under stress relaxation testing conditions. The results obtained with the proposed analytical model are compared with corresponding finite element analysis results for a broad range of mechanical parameters of the tumor. The results indicate that the proposed model is accurate and closely resembles the finite element analysis. The availability of this model and its solutions can be helpful for ultrasound elastography applications such as for extracting the mechanical parameters of the tumor and normal tissue and, in general, to study the impact of poroelastic material properties in the assessment of tumors.

References

References
1.
Sarntinoranont
,
M.
,
Rooney
,
F.
, and
Ferrari
,
M.
,
2003
, “
Interstitial Stress and Fluid Pressure Within a Growing Tumor
,”
Ann. Biomed. Eng.
,
31
(
3
), pp.
327
335
.
2.
Swabb
,
E. A.
,
Wei
,
J.
, and
Gullino
,
P. M.
,
1974
, “
Diffusion and Convection in Normal and Neoplastic Tissues
,”
Cancer Res.
,
34
(
10
), pp.
2814
2822
.
3.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
,
1995
, “
Time-Dependent Behavior of Interstitial Fluid Pressure in Solid Tumors: Implications for Drug Delivery
,”
Cancer Res.
,
55
(
22
), pp.
5451
5458
.
4.
Swartz
,
M. A.
,
Kaipainen
,
A.
,
Netti
,
P. A.
,
Brekken
,
C.
,
Boucher
,
Y.
,
Grodzinsky
,
A. J.
, and
Jain
,
R. K.
,
1999
, “
Mechanics of Interstitial-Lymphatic Fluid Transport: Theoretical Foundation and Experimental Validation
,”
J. Biomech.
,
32
(
12
), pp.
1297
1307
.
5.
Jain
,
R. K.
,
Martin
,
J. D.
, and
Stylianopoulos
,
T.
,
2014
, “
The Role of Mechanical Forces in Tumor Growth and Therapy
,”
Annu. Rev. Biomed. Eng.
,
16
(
1
), pp.
321
346
.
6.
Jain
,
R. K.
,
Tong
,
R. T.
, and
Munn
,
L. L.
,
2007
, “
Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights From a Mathematical Model
,”
Cancer Res.
,
67
(
6
), pp.
2729
2735
.
7.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
,
1997
, “
Macro-and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors
,”
AIChE J.
,
43
(
3
), pp.
818
834
.
8.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1991
, “
Transport of Fluid and Macromolecules in Tumors—Part IV: A Microscopic Model of the Perivascular Distribution
,”
Microvasc. Res.
,
41
(
2
), pp.
252
272
.
9.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1989
, “
Transport of Fluid and Macromolecules in Tumors—Part I: Role of Interstitial Pressure and Convection
,”
Microvasc. Res.
,
37
(
1
), pp.
77
104
.
10.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1990
, “
Transport of Fluid and Macromolecules in Tumors—Part II: Role of Heterogeneous Perfusion and Lymphatics
,”
Microvasc. Res.
,
40
(
2
), pp.
246
263
.
11.
Jain
,
R. K.
, and
Baxter
,
L. T.
,
1988
, “
Mechanisms of Heterogeneous Distribution of Monoclonal Antibodies and Other Macromolecules in Tumors: Significance of Elevated Interstitial Pressure
,”
Cancer Res.
,
48
(
24 Pt 1
), pp.
7022
7032
.
12.
Milosevic
,
M. F.
,
Fyles
,
A. W.
, and
Hill
,
R. P.
,
1999
, “
The Relationship Between Elevated Interstitial Fluid Pressure and Blood Flow in Tumors: A Bioengineering Analysis
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
43
(
5
), pp.
1111
1123
.
13.
Netti
,
P.
,
Baxter
,
L.
,
Coucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R.
,
1995
, “
A Poroelastic Model for Interstitial Pressure in Tumors
,”
Biorheology
,
32
(
2–3
), pp.
346
346
.
14.
Byrne
,
H.
, and
Chaplain
,
M. A.
,
1996
, “
Modelling the Role of Cell-Cell Adhesion in the Growth and Development of Carcinomas
,”
Math. Comput. Modell.
,
24
(
12
), pp.
1
17
.
15.
Jones
,
A.
,
Byrne
,
H.
,
Gibson
,
J.
, and
Dold
,
J.
,
2000
, “
A Mathematical Model of the Stress Induced During Avascular Tumour Growth
,”
J. Math. Biol.
,
40
(
6
), pp.
473
499
.
16.
Kyriacou
,
S. K.
,
Davatzikos
,
C.
,
Zinreich
,
S. J.
, and
Bryan
,
R. N.
,
1999
, “
Nonlinear Elastic Registration of Brain Images With Tumor Pathology Using a Biomechanical Model [Mri]
,”
IEEE Trans. Med. Imaging
,
18
(
7
), pp.
580
592
.
17.
Rice
,
J.
,
Rudnicki
,
J.
, and
Simons
,
D. A.
,
1978
, “
Deformation of Spherical Cavities and Inclusions in Fluid-Infiltrated Elastic Materials
,”
Int. J. Solids Struct.
,
14
(
4
), pp.
289
303
.
18.
Song
,
Y.
,
Hu
,
H.
, and
Rudnicki
,
J. W.
,
2016
, “
Shear Properties of Heterogeneous Fluid-Filled Porous Media With Spherical Inclusions
,”
Int. J. Solids Struct.
,
83
, pp.
154
168
.
19.
Song
,
Y.
,
Hu
,
H.
,
Rudnicki
,
J. W.
, and
Duan
,
Y.
,
2016
, “
Dynamic Transverse Shear Modulus for a Heterogeneous Fluid-Filled Porous Solid Containing Cylindrical Inclusions
,”
Geophys. J. Int.
,
206
(
3
), pp.
1677
1694
.
20.
Berryman
,
J. G.
,
1985
, “
Scattering by a Spherical Inhomogeneity in a Fluid-Saturated Porous Medium
,”
J. Math. Phys.
,
26
(
6
), pp.
1408
1419
.
21.
Kanj
,
M.
, and
Abousleiman
,
Y.
,
2005
, “
Porothermoelastic Analyses of Anisotropic Hollow Cylinders With Applications
,”
Int. J. Numer. Anal. Methods Geomech.
,
29
(
2
), pp.
103
126
.
22.
Cui
,
L.
, and
Abousleiman
,
Y.
,
2001
, “
Time-Dependent Poromechanical Responses of Saturated Cylinders
,”
J. Eng. Mech.
,
127
(
4
), pp.
391
398
.
23.
Mow
,
V. C.
, and
Lai
,
W. M.
,
1980
, “
Recent Developments in Synovial Joint Biomechanics
,”
SIAM Rev.
,
22
(
3
), pp.
275
317
.
24.
Mow
,
V. C.
,
Ratcliffe
,
A.
, and
Woo
,
S. L.
,
2012
,
Biomechanics of Diarthrodial Joints
, Vol.
1
,
Springer Science & Business Media
, Berlin.
25.
Mow
,
V. C.
,
Kuei
,
S.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
26.
Mow
,
V.
,
Bachrach
,
N.
,
Setton
,
L.
, and
Guilak
,
F.
,
1994
, “
Stress, Strain, Pressure and Flow Fields in Articular Cartilage and Chondrocytes
,”
Cell Mechanics and Cellular Engineering
,
Springer
, New York, pp.
345
379
.
27.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
28.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
(
4
), pp.
1482
1498
.
29.
Cheng
,
A. H.-D.
,
Detournay
,
E.
, and
Abousleiman
,
Y.
,
2016
,
Poroelasticity
, Vol.
27
,
Springer
, Berlin.
30.
Armstrong
,
C.
,
Lai
,
W.
, and
Mow
,
V.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.
31.
Berry
,
G. P.
,
Bamber
,
J. C.
,
Armstrong
,
C. G.
,
Miller
,
N. R.
, and
Barbone
,
P. E.
,
2006
, “
Towards an Acoustic Model-Based Poroelastic Imaging Method—Part I: Theoretical Foundation
,”
Ultrasound Med. Biol.
,
32
(
12
), pp.
547
567
.
32.
Swartz
,
M. A.
, and
Fleury
,
M. E.
,
2007
, “
Interstitial Flow and Its Effects in Soft Tissues
,”
Annu. Rev. Biomed. Eng
,
9
, pp.
229
256
.
33.
Ateshian
,
G. A.
,
Costa
,
K. D.
, and
Hung
,
C. T.
,
2007
, “
A Theoretical Analysis of Water Transport Through Chondrocytes
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
91
101
.
34.
Righetti
,
R.
,
Ophir
,
J.
,
Srinivasan
,
S.
, and
Krouskop
,
T. A.
,
2004
, “
The Feasibility of Using Elastography for Imaging the Poisson's Ratio in Porous Media
,”
Ultrasound Med. Biol.
,
30
(
2
), pp.
215
228
.
35.
Leiderman
,
R.
,
Barbone
,
P. E.
,
Oberai
,
A. A.
, and
Bamber
,
J. C.
,
2006
, “
Coupling Between Elastic Strain and Interstitial Fluid Flow: Ramifications for Poroelastic Imaging
,”
Phys. Med. Biol.
,
51
(
24
), pp.
6291
6313
.
36.
Chaudhry
,
A.
,
2016
, “
Imaging and Measurement of the Poroelastic Behavior of Materials Using New Ultrasound Elastography Techniques
,”
Ph.D. thesis
, Texas A&M University, College Station, TX.http://hdl.handle.net/1969.1/158941
37.
Berry
,
G. P.
,
Bamber
,
J. C.
,
Miller
,
N. R.
,
Barbone
,
P. E.
,
Bush
,
N. L.
, and
Armstrong
,
C. G.
,
2006
, “
Towards an Acoustic Model-Based Poroelastic Imaging Method—Part II: Experimental Investigation
,”
Ultrasound Med. Biol.
,
32
(
12
), pp.
1869
1885
.
38.
Adam
,
J. A.
,
1987
, “
A Mathematical Model of Tumor Growth—Part II: Effects of Geometry and Spatial Nonuniformity on Stability
,”
Math. Biosci.
,
86
(
2
), pp.
183
211
.
39.
Rizwan-Uddin
, and
Saeed
,
I. M.
,
1998
, “
Structure and Growth of Tumors: The Effect of Cartesian, Cylindrical, and Spherical Geometries
,”
Ann. New York Acad. Sci.
,
858
(
1
), pp.
127
136
.
40.
Sciumè
,
G.
,
Shelton
,
S.
,
Gray
,
W. G.
,
Miller
,
C. T.
,
Hussain
,
F.
,
Ferrari
,
M.
,
Decuzzi
,
P.
, and
Schrefler
,
B.
,
2013
, “
A Multiphase Model for Three-Dimensional Tumor Growth
,”
New J. Phys.
,
15
(
1
), p.
015005
.
41.
Islam
,
M. T.
,
Chaudhry
,
A.
,
Unnikrishnan
,
G.
,
Reddy
,
J.
, and
Righetti
,
R.
,
2018
, “
An Analytical Poroelastic Model for Ultrasound Elastography Imaging of Tumors
,”
Phys. Med. Biol.
,
63
(
2
), p.
025031
.
42.
Verruijt
,
A.
,
2013
,
Theory and Problems of Poroelasticity
,
Delft University of Technology
, Delft, The Netherlands, p.
71
.
43.
Grodzinsky
,
A.
,
Roth
,
V.
,
Myers
,
E.
,
Grossman
,
W.
, and
Mow
,
V.
,
1981
, “
The Significance of Electromechanical and Osmotic Forces in the Nonequilibrium Swelling Behavior of Articular Cartilage in Tension
,”
ASME J. Biomech. Eng.
,
103
(
4
), pp.
221
231
.
44.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Clarendon Press
,
Oxford
, UK, p.
207
.
45.
Muskat
,
M.
, and
Wyckoff
,
R. D.
,
1937
,
Flow of Homogeneous Fluids Through Porous Media
, McGraw-Hill Book Company, New York, p.
645
.
46.
Hibbitt, Karlsson, and Sorensen,
2001
,
ABAQUS/Explicit: User's Manual
, Vol.
1
, Hibbitt, Karlsson and Sorenson Inc., Providence, RI.
47.
Zhi
,
H.
,
Ou
,
B.
,
Luo
,
B.-M.
,
Feng
,
X.
,
Wen
,
Y.-L.
, and
Yang
,
H.-Y.
,
2007
, “
Comparison of Ultrasound Elastography, Mammography, and Sonography in the Diagnosis of Solid Breast Lesions
,”
J. Ultrasound Med.
,
26
(
6
), pp.
807
815
.
48.
Rzymski
,
P.
, and
Opala
,
T.
,
2011
, “
Elastography as a New Diagnostic Tool to Detect Breast Cancer–Evaluation of Research and Clinical Applications
,”
Przegl. Menopauzalny
,
5
, pp.
357
362
.
49.
Stylianopoulos
,
T.
,
Martin
,
J. D.
,
Snuderl
,
M.
,
Mpekris
,
F.
,
Jain
,
S. R.
, and
Jain
,
R. K.
,
2013
, “
Coevolution of Solid Stress and Interstitial Fluid Pressure in Tumors During Progression: Implications for Vascular Collapse
,”
Cancer Res.
,
73
(
13
), pp.
3833
3841
.
50.
Mpekris
,
F.
,
Baish
,
J. W.
,
Stylianopoulos
,
T.
, and
Jain
,
R. K.
,
2017
, “
Role of Vascular Normalization in Benefit From Metronomic Chemotherapy
,”
Proc. Natl. Acad. Sci.
,
114
(
8
), pp.
1994
1999
.
51.
Fung
,
Y.-C.
,
1993
, “
Mechanical Properties and Active Remodeling of Blood Vessels
,”
Biomechanics
,
Springer
, New York, pp.
321
391
.
52.
Netti
,
P. A.
,
Berk
,
D. A.
,
Swartz
,
M. A.
,
Grodzinsky
,
A. J.
, and
Jain
,
R. K.
,
2000
, “
Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors
,”
Cancer Res.
,
60
(
9
), pp.
2497
2503
.http://cancerres.aacrjournals.org/content/60/9/2497
53.
Laible
,
J.
,
Pflaster
,
D.
,
Simon
,
B.
,
Krag
,
M.
,
Pope
,
M.
, and
Haugh
,
L.
,
1994
, “
A Dynamic Material Parameter Estimation Procedure for Soft Tissue Using a Poroelastic Finite Element Model
,”
ASME J. Biomech. Eng.
,
116
(
1
), pp.
19
29
.
54.
Chaudhry
,
A.
,
Unnikrishnan
,
G.
,
Reddy
,
J.
,
Krouskop
,
T. A.
, and
Righetti
,
R.
,
2013
, “
Effect of Permeability on the Performance of Elastographic Imaging Techniques
,”
IEEE Trans. Med. Imaging
,
32
(
2
), pp.
189
199
.
You do not currently have access to this content.