An intracochlear lead-zirconate-titanate (PZT) microactuator integrated with a cochlear implant electrode array could be a feasible strategy to implement combined electric and acoustic stimulation inside the cochlea. The purpose of this paper is to characterize in vitro a prototype PZT microactuator for intracochlear applications, including service life, failure mechanisms, and lead leaching. PZT microactuators were driven sinusoidally to failure in air and in artificial perilymph. Frequency response functions (FRFs) and electrical impedance were monitored. After the PZT microactuators failed, the amount of leached lead was measured via inductive coupled plasma mass spectrometry (ICP-MS). Two failure mechanisms are identified: electrical breakdown and structural failure. The electrical breakdown, possibly from loss of parylene encapsulation, is evidenced by a sudden and significant drop of the actuators' electrical resistance. The structural failure, possibly from electrode delamination, is evidenced by a sudden and significant drop of FRFs. The amount of lead leached from the PZT microactuator is well below published safety guidelines from federal agencies.

References

References
1.
Gantz
,
B. J.
,
Turner
,
C.
,
Gfeller
,
K. E.
, and
Lowder
,
M. W.
,
2005
, “
Preservation of Hearing in Cochlear Implant Surgery: Advantages of Combined Electrical and Acoustical Speech Processing
,”
Laryngoscope
,
115
(
5
), pp.
796
802
.
2.
Wilson
,
B. S.
,
Lawson
,
D. T.
,
Müller
,
J. M.
,
Tyler
,
R. S.
, and
Kiefer
,
J.
,
2003
, “
Cochlear Implants: Some Likely Next Steps
,”
Annu. Rev. Biomed. Eng.
,
5
(
1
), pp.
207
249
.
3.
Dorman
,
M. F.
, and
Gifford
,
R. H.
,
2010
, “
Combining Acoustic and Electric Stimulation in the Service of Speech Recognition
,”
Int. J. Audiol.
,
49
(
12
), pp.
912
919
.
4.
Kong
,
Y. Y.
,
Stickney
,
G. S.
, and
Zeng
,
F. G.
,
2005
, “
Speech and Melody Recognition in Binaurally Combined Acoustic and Electric Hearing
,”
J. Acoust. Soc. Am.
,
117
(
3
), pp.
1351
1361
.
5.
Dorman
,
M. F.
,
Gifford
,
R. H.
,
Spahr
,
A. J.
, and
McKarns
,
S. A.
,
2008
, “
The Benefits of Combining Acoustic and Electric Stimulation for the Recognition of Speech, Voice and Melodies
,”
Audiol. Neurotol.
,
13
(
2
), pp.
105
112
.
6.
Luo
,
X.
,
Fu
,
Q. J.
, and
Galvin
,
J. J.
, III
,
2007
, “
Cochlear Implants Special Issue Article: Vocal Emotion Recognition by Normal-Hearing Listeners and Cochlear Implant Users
,”
Trends Amplif.
,
11
(
4
), pp.
301
315
.
7.
Turner
,
C. W.
,
Gantz
,
B. J.
,
Vidal
,
C.
,
Behrens
,
A.
, and
Henry
,
B. A.
,
2004
, “
Speech Recognition in Noise for Cochlear Implant Listeners: Benefits of Residual Acoustic Hearing
,”
J. Acoust. Soc. Am.
,
115
(
4
), pp.
1729
1735
.
8.
Luo
,
C.
,
Cao
,
G. Z.
, and
Shen
,
I. Y.
,
2013
, “
Development of a Lead-Zirconate-Titanate (PZT) Thin-Film Microactuator Probe for Intracochlear Applications
,”
Sens. Actuators A: Phys.
,
201
, pp.
1
9
.
9.
Luo
,
C.
,
Cao
,
G. Z.
, and
Shen
,
I. Y.
,
2012
, “
Enhancing Displacement of Lead–Zirconate–Titanate (PZT) Thin-Film Membrane Microactuators Via a Dual Electrode Design
,”
Sens. Actuators A: Phys.
,
173
(
1
), pp.
190
196
.
10.
Luo
,
C.
,
Omelchenko
,
I.
,
Manson
,
R.
,
Robbins
,
C.
,
Oesterle
,
E. C.
,
Cao
,
G. Z.
,
Shen
,
I. Y.
, and
Hume
,
C. R.
,
2015
, “
Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator
,”
Trends Hear.
,
19
, pp. 1–14.
11.
Nuttall
,
A. L.
,
LaRouere
,
M. J.
, and
Lawrence
,
M.
,
1982
, “
Acute Perilymphatic Perfusion of the Guinea Pig Cochlea
,”
Hear. Res.
,
6
(
2
), pp.
207
221
.
12.
Xie
,
X.
,
Rieth
,
L.
,
Caldwell
,
R.
,
Diwekar
,
M.
,
Tathireddy
,
P.
,
Sharma
,
R.
, and
Solzbacher
,
F.
,
2013
, “
Long-Term Bilayer Encapsulation Performance of Atomic Layer Deposited Al2O3 and Parylene C for Biomedical Implantable Devices
,”
IEEE Trans. Biomed. Eng.
,
60
(
10
), pp.
2943
2951
.
You do not currently have access to this content.