We found a significant difference (P < 0.05) between the linear portion of the elastic modulus (∼20 MPa) and tensile strength (∼2 MPa) at the 0.2 mm/s (low: 0.01 s−1), 2 mm/s (medium: 0.11 s−1), and 20 mm/s (high: 1.11 s−1) loading rates by performing a series of uniaxial stretching tests. However, the mechanical properties of the neural fiber bundles were resultantly of the same magnitude, indicating that their mechanical responses were relatively insensitive to a given strain rate regardless of a 100-fold increase in the applied stretching velocities. We also confirmed that a “spinal level effect” exists in the nerve roots, i.e., a fiber bundle isolated from the lumbar spinal level is weaker in mechanical strength compared to that from the cervical and thoracic spinal levels (P < 0.05), suggesting that closer attention should be paid to an anatomical site from which test samples are excised.

References

References
1.
WHO
,
2013
, “
Global Status Report on Road Safety
,” World Health Organization, Geneva, Switzerland,
Report
.
2.
Sakaguchi
,
K.
,
Mizutani
,
W.
, and
Mori
,
K.
,
2013
, “
Issues Related to Public Insurance Covering a Medical Expense Involved in Traffic Accidents: Compulsory Automobile Liability Insurance and Public Medical Care Insurance
,” Japan Medical Association Research Institute Working Paper (in Japanese), Tokyo, Japan, accessed Mar. 21, 2018, http://www.jmari.med.or.jp/download/WP306.pdf
3.
Acar
,
M.
, and
Bewsher
,
S. R.
,
2016
, “
Design Concepts for an Integrated Whiplash Mitigating Head Restraint and Seat
,”
Int. J. Crashworthiness
,
21
(
5
), pp.
79
88
.
4.
Grauer
,
J. N.
,
Panjabi
,
M. M.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Dvorak
,
J.
,
1997
, “
Whiplash Produces an S-Shaped Curvature of the Neck With Hyperextension at Lower Levels
,”
Spine
,
22
(
21
), pp.
2489
2494
.
5.
Cholewicki
,
J.
,
Panjabi
,
M. M.
,
Nibu
,
K.
,
Babat
,
L. B.
,
Grauer
,
J. N.
, and
Dvorak
,
J.
,
1998
, “
Head Kinematics During In Vitro Whiplash Simulation
,”
Accid. Anal. Prev.
,
30
(4), pp.
469
479
.
6.
Miyamoto
,
H.
,
Dumas
,
G. A.
,
Wyss
,
U. P.
, and
Ryd
,
L.
,
2003
, “
Three-Dimensional Analysis of the Movement of Lumbar Spinal Nerve Roots in Nonsimulated and Simulated Adhesive Conditions
,”
Spine
,
28
(
20
), pp.
2373
2380
.
7.
Hasegawa
,
J.
, and
Shiomi
,
A.
,
2003
, “
A Study of Whiplash Injury Occurrence Mechanisms Using Human Finite Element Model
,”
18th International Technical Conference on the Enhanced Safety of Vehicles
, Nagoya, Japan, May 19–22, Paper No.
195
.
8.
Cronin
,
D. S.
,
2014
, “
Finite Element Modeling of Potential Cervical Spine Pain Sources in Neutral Position Low Speed Rear Impact
,”
J. Mech. Behav. Biomed. Mater.
,
33
, pp.
55
66
.
9.
Mustafy
,
T.
,
Moglo
,
K.
,
Adeeb
,
S.
, and
El-Rich
,
M.
,
2016
, “
Injury Mechanisms of the Ligamentous Cervical C2–C3 Functional Spinal Unit to Complex Loading Modes: Finite Element Study
,”
J. Mech. Behav. Biomed. Mater.
,
53
, pp.
384
396
.
10.
Sunderland
,
S.
, and
Bradley
,
K. C.
,
1961
, “
Stress-Strain Phenomena in Human Spinal Nerve Roots
,”
Brain
,
84
(
1
), pp.
120
124
.
11.
Beel
,
J. A.
,
Stodieck
,
L. S.
, and
Luttges
,
M. W.
,
1986
, “
Structural Properties of Spinal Nerve Roots: Biomechanics
,”
Exp. Neurol.
,
91
(
1
), pp.
30
40
.
12.
Singh
,
A.
,
Lu
,
Y.
,
Chen
,
C.
, and
Cavanaugh
,
J. M.
,
2006
, “
Mechanical Properties of Spinal Nerve Roots Subjected to Tension at Different Strain Rates
,”
J. Biomech.
,
39
(
9
), pp.
1669
1676
.
13.
van Noort
,
R.
,
Black
,
M. M.
,
Martin
,
T. R. P.
, and
Meaney
,
S.
,
1981
, “
A Study of the Uniaxial Mechanical Properties of Human Dura Mater Preserved in Glycerol
,”
Biomaterials
,
2
(
1
), pp.
41
45
.
14.
McGarvey
,
K. A.
,
Lee
,
J. M.
, and
Boughner
,
D. R.
,
1984
, “
Mechanical Suitability of Glycerol-Preserved Human Dura Mater for Construction of Prosthetic Cardiac Valves
,”
Biomaterials
,
5
(2), pp.
109
117
.
15.
Hashimoto
,
Y.
,
Funamoto
,
S.
,
Sasaki
,
S.
,
Honda
,
T.
,
Hattori
,
S.
,
Nam
,
K.
,
Kimura
,
T.
,
Mochizuki
,
M.
,
Fujisato
,
T.
,
Kobayashi
,
H.
, and
Kishida
,
A.
,
2010
, “
Preparation and Characterization of Decellularized Cornea Using High-Hydrostatic Pressurization for Corneal Tissue Engineering
,”
Biomaterials
,
31
(
14
), pp.
3941
3948
.
16.
Tamura
,
A.
,
Murakami
,
J.
,
Sone
,
Y.
, and
Koide
,
T.
,
2015
, “
Strain Rate Effects on the Tensile Behavior of Fiber Bundles Isolated From Nerve Root
,”
International Annual Conference on Sustainable Research and Innovation
, Nairobi, Kenya, May 5, pp.
80
85
.
17.
Tamura
,
A.
,
Murakami
,
J.
,
Sone
,
Y.
, and
Koide
,
T.
,
2015
, “
Strain Rate Effects on the Tensile Behavior of Fiber Bundles Isolated From Nerve Root
,”
J. Sustainable Res. Eng.
,
2
(2), pp.
63
69
.
18.
Tamura
,
A.
,
Sakaya
,
M.
, and
Koide
,
T.
,
2016
, “
Effects of Anatomical Site and Loading Rate on Tensile Behavior of Fiber Bundles Isolated From Nerve Roots
,”
ASME
Paper No. IMECE2016-66016.
19.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2009
, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.
20.
Miller
,
K. S.
,
Connizzo
,
B. K.
,
Freeney
,
E.
, and
Soslowsky
,
L. J.
,
2012
, “
Characterizing Local Collagen Fiber Re-Alignment and Crimp Behavior Throughout Mechanical Testing in a Mature Mouse Supraspinatus Tendon Model
,”
J. Biomech.
,
45
(
12
), pp.
2061
2065
.
21.
Nishida
,
N.
,
Kanchiku
,
T.
,
Ohgi
,
J.
,
Ichihara
,
K.
,
Chen
,
X.
, and
Taguchi
,
T.
,
2015
, “
Mechanical Properties of Nerve Roots and Rami Radiculares Isolated From Fresh Pig Spinal Cords
,”
Neural Regener. Res.
,
10
(
11
), pp.
1869
1873
.
You do not currently have access to this content.