Exercise-induced fatigue evolves from the initiation of physical work. Nonetheless, the development of an objective method for detecting fatigue based on variation in ambulatory motion parameters measured during exercise is yet to be explored. In this study, the ambulatory motion parameters consisting of kinematic parameters of 23 body segments in addition to muscle tissue oxygen saturation (SmO2), heart rate, and vertical work of eight healthy male subjects during stair climbing tests (SCT) were measured before and after a fatigue protocol utilizing Wingate cycling test. The impacts of fatigue on ambulatory motion and postural behaviors were analyzed using an unsupervised machine learning method classifying angular joint motions. The average of total distance traveled by subjects and the overall body postural behavior showed about 25% decline and 90% variation after fatigue protocol, respectively. Also, higher relative desaturation in SCT1 −64.0 (1.1) compared SCT2 −54.8 (1.1) was measured. Measurements of differences in motion postural states and metabolic indexes after exercises-induced fatigue proved a strong correlation which validates the advantages of inertial motion analysis method for fatigue assessment.

References

References
1.
Thompson
,
B. J.
,
Conchola
,
E. C.
, and
Stock
,
M. S.
,
2015
, “
Effects of Age and Muscle Action Type on Acute Strength and Power Recovery Following Fatigue of the Leg Flexors
,”
Age (Dordr)
,
37
(
6
), p.
111
.
2.
Reimer
,
R. C.
, III, and
Wikstrom
,
E. A.
,
2010
, “
Functional Fatigue of the Hip and Ankle Musculature Cause Similar Alterations in Single Leg Stance Postural Control
,”
J. Sci. Med. Sport
,
13
(
1
), pp.
161
166
.
3.
Enoka
,
R. M.
,
2012
, “
Muscle Fatigue–From Motor Units to Clinical Symptoms
,”
J. Biomech.
,
45
(
3
), pp.
427
33
.
4.
Zhang
,
J.
,
Lockhart
,
T. E.
, and
Soangra
,
R.
,
2014
, “
Classifying Lower Extremity Muscle Fatigue During Walking Using Machine Learning and Inertial Sensors
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
600
612
.
5.
Sedighi Maman
,
Z.
,
Alamdar Yazdi
,
M. A.
,
Cavuoto
,
L. A.
, and
Megahed
,
F. M.
,
2017
, “
A Data-Driven Approach to Modeling Physical Fatigue in the Workplace Using Wearable Sensors
,”
Appl. Ergonom.
,
65
, pp.
515
529
.
6.
Poole
,
D. C.
,
Ferreira
,
L. F.
,
Behnke
,
B. J.
,
Barstow
,
T. J.
, and
Jones
,
A. M.
,
2007
, “
The Final Frontier: Oxygen Flux Into Muscle at Exercise Onset
,”
Exercise Sport Sci. Rev.
,
35
(
4
), pp.
166
173
.
7.
Christina
,
K. A.
,
White
,
S. C.
, and
Gilchrist
,
L. A.
,
2001
, “
Effect of Localized Muscle Fatigue on Vertical Ground Reaction Forces and Ankle Joint Motion During Running
,”
Hum. Mov. Sci.
,
20
(
3
), pp.
257
276
.
8.
Olson
,
M. W.
,
2010
, “
Trunk Extensor Fatigue Influences Trunk Muscle Activities During Walking Gait
,”
J. Electromyogr. Kinesiol.
,
20
(
1
), pp.
17
24
.
9.
Karg
,
M.
,
Venture
,
G.
,
Hoey
,
J.
, and
Kulic
,
D.
,
2014
, “
Human Movement Analysis as a Measure for Fatigue: A Hidden Markov-Based Approach
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
3
), pp.
470
481
.
10.
Dong
,
H.
,
Ugalde
,
I.
,
Figueroa
,
N.
, and
El Saddik
,
A.
,
2014
, “
Towards Whole Body Fatigue Assessment of Human Movement: A Fatigue-Tracking System Based on Combined sEMG and Accelerometer Signals
,”
Sensors
,
14
(
12
), pp.
2052
2070
.
11.
Enoka
,
R. M.
, and
Duchateau
,
J.
,
2008
, “
Muscle Fatigue: What, Why and How It Influences Muscle Function
,”
J. Physiol.
,
586
(
1
), pp.
11
23
.
12.
Yoshitake
,
Y.
,
Ue
,
H.
,
Miyazaki
,
M.
, and
Moritani
,
T.
,
2001
, “
Assessment of Lower-Back Muscle Fatigue Using Electromyography, Mechanomyography, and Near-Infrared Spectroscopy
,”
Eur. J. Appl. Physiol.
,
84
(
3
), pp.
174
179
.
13.
Leitch
,
J.
,
Stebbins
,
J.
,
Paolini
,
G.
, and
Zavatsky
,
A. B.
,
2011
, “
Identifying Gait Events Without a Force Plate During Running: A Comparison of Methods
,”
Gait Posture
,
33
(
1
), pp.
130
132
.
14.
Jun-Tian
,
Z.
,
Alison
,
C. N.
,
Brenda
,
B.
, and
Qingguo
,
L.
,
2013
, “
Concurrent Validation of Xsens MVN Measurement of Lower Limb Joint Angular Kinematics
,”
Physiol. Meas.
,
34
(
8
), p.
N63
.
15.
Ameli
,
S.
,
Naghdy
,
F.
,
Stirling
,
D.
,
Naghdy
,
G.
, and
Aghmesheh
,
M.
,
2012
, “
Objective Clinical Fitness Assessment Using Inertial Sensors
,”
Procedia Eng.
,
41
, pp.
443
449
.
16.
Qu
,
X.
,
2013
, “
Effects of Cognitive and Physical Loads on Local Dynamic Stability During Gait
,”
Appl. Ergonom.
,
44
(
3
), pp.
455
458
.
17.
McGinley
,
J. L.
,
Baker
,
R.
,
Wolfe
,
R.
, and
Morris
,
M. E.
,
2009
, “
The Reliability of Three-Dimensional Kinematic Gait Measurements: A Systematic Review
,”
Gait Posture
,
29
(
3
), pp.
360
369
.
18.
Lai
,
D. T.
,
Begg
,
R. K.
, and
Palaniswami
,
M.
,
2009
, “
Computational Intelligence in Gait Research: A Perspective on Current Applications and Future Challenges
,”
IEEE Trans. Inf. Technol. Biomed.
,
13
(
5
), pp.
687
702
.
19.
Lo Presti
,
L.
,
La Cascia
,
M.
,
Sclaroff
,
S.
, and
Camps
,
O.
,
2015
, “
Gesture Modeling by Hanklet-Based Hidden Markov Model
,”
Computer Vision—ACCV 2014 9005
,
D.
Cremers
,
I.
Reid
,
H.
Saito
, and
M.-H.
Yang
, eds.,
Springer International Publishing
, Singapore, pp.
529
546
.
20.
Ng
,
H.
,
2011
, “
Improved Gait Classification With Different Smoothing Techniques
,”
Int. J. Adv. Sci., Eng. Inf. Technol.
,
1
(
3
), p.
242
.
21.
Zhang
,
B.-L.
,
Zhang
,
Y.
, and
Begg
,
R. K.
,
2009
, “
Gait Classification in Children With Cerebral Palsy by Bayesian Approach
,”
Pattern Recognit.
,
42
(
4
), pp.
581
586
.
22.
Yi
,
H.
,
Dong
,
X.
, and
Feiping
,
N.
,
2010
, “
Regularized Trace Ratio Discriminant Analysis With Patch Distribution Feature for Human Gait Recognition
,”
17th IEEE International Conference on Image Processing
(
ICIP
), Hong Kong, China, Sept. 26–29, pp.
2449
2452
.
23.
Ameli
,
S.
,
Naghdy
,
F.
,
Stirling
,
D.
,
Naghdy
,
G.
, and
Aghmesheh
,
M.
,
2016
, “
Objective Clinical Gait Analysis Using Inertial Sensors and Six Minute Walking Test
,”
Pattern Recognit.
,
63
, pp.
246
257
.
24.
Ameli
,
S.
,
Stirling
,
D.
,
Naghdy
,
F.
,
Naghdy
,
G.
, and
Aghmesheh
,
M.
,
2013
, “
Assessing the Impact of Fatigue on Gait Using Inertial Sensors
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
307
312
.
25.
Baláš
,
J.
,
Michailov
,
M.
,
Giles
,
D.
,
Kodejška
,
J.
,
Panáčková
,
M.
, and
Fryer
,
S.
,
2016
, “
Active Recovery of the Finger Flexors Enhances Intermittent Handgrip Performance in Rock Climbers
,”
Eur. J. Sport Sci.
,
16
(
7
), pp.
764
772
.
26.
Muramatsu
,
Y.
, and
Kobayashi
,
H.
,
2014
, “
Assessment of Local Muscle Fatigue by NIRS—Development and Evaluation of Muscle Suit
,”
Robomech. J.
,
1
(
1
), pp.
1
11
.
27.
Nygren
,
A.
,
Rennerfelt
,
K.
, and
Zhang
,
Q.
,
2014
, “
Detection of Changes in Muscle Oxygen Saturation in the Human Leg: A Comparison of Two Near-Infrared Spectroscopy Devices
,”
J. Clin. Monit. Comput.
,
28
(
1
), pp.
57
62
.
28.
Bergmann
,
J. H.
,
Smith
,
I. C.
, and
Mayagoitia
,
R. E.
,
2012
, “
Using a Body Sensor Network to Measure the Effect of Fatigue on Stair Climbing Performance
,”
Physiol. Meas.
,
33
(
2
), pp.
287
296
.
29.
Brunelli
,
A.
,
Kim
,
A. W.
,
Berger
,
K. I.
, and
Addrizzo-Harris
,
D. J.
,
2013
, “
Physiologic Evaluation of the Patient With Lung Cancer Being Considered for Resectional Surgery: Diagnosis and Management of Lung Cancer
,”
Chest
,
143
(
5
), pp.
e166S
e190S
.
30.
Serpell
,
B. G.
,
Ball
,
N. B.
,
Scarvell
,
J. M.
, and
Smith
,
P. N.
,
2012
, “
A Review of Models of Vertical, Leg, and Knee Stiffness in Adults for Running, Jumping or Hopping Tasks
,”
J. Sports Sci.
,
30
(
13
), pp.
1347
1363
.
31.
Bentley
,
D.
,
Smith
,
P.
,
Davie
,
A.
, and
Zhou
,
S.
,
2000
, “
Muscle Activation of the Knee Extensors Following High Intensity Endurance Exercise in Cyclists
,”
Eur. J. Appl. Physiol.
,
81
(
4
), pp.
297
302
.
32.
Hingley
,
L.
,
Macartney
,
M. J.
,
Brown
,
M. A.
,
McLennan
,
P. L.
, and
Peoples
,
G. E.
,
2017
, “
DHA-Rich Fish Oil Increases the Omega-3 Index and Lowers the Oxygen Cost of Physiologically Stressful Cycling in Trained Individuals
,”
Int. J. Sport Nutr. Exercise Metab.
,
27
(
4
), pp.
335
343
.
33.
Peoples
,
G. E.
, and
McLennan
,
P. L.
,
2016
, “
Fish Oil for Physical Performance in Athletes A2—Raatz, Susan K
,”
Fish and Fish Oil in Health and Disease Prevention
,
D. M.
Bibus
, ed.,
Academic Press
,
San Diego, CA
, pp.
119
136
.
34.
Field
,
M.
,
Stirling
,
D.
,
Ros
,
M.
,
Pan
,
Z.
, and
Naghdy
,
F.
,
2013
, “
Inertial Sensing for Human Motor Control Symmetry in Injury Rehabilitation
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
1470
1475
.
35.
Roig
,
M.
,
Eng
,
J. J.
,
MacIntyre
,
D. L.
,
Road
,
J. D.
, and
Darlene
,
R. W.
,
2010
, “
Associations of the Stair Climb Power Test With Muscle Strength and Functional Performance in People With Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study
,”
Phys. Ther.
,
90
(
12
), pp.
1774
1782
.
36.
Margaria
,
R.
,
Aghemo
,
P.
, and
Rovelli
,
E.
,
1966
, “
Measurement of Muscular Power (Anaerobic) in Man
,”
J. Appl. Physiol.
,
21
(
5
), pp.
1662
1664
.
You do not currently have access to this content.