Acute chest syndrome (ACS) is a leading cause of death for those with sickle cell disease (SCD). ACS is defined by the development of a new pulmonary infiltrate on chest X-ray, with fever and respiratory symptoms. Efforts have been made to apply various technologies in the hospital setting to provide earlier detection of ACS than X-ray, but they are expensive, increase radiation exposure to the patient, and are not technologies that are easily transferrable for home use to help with early diagnosis. We present preliminary studies on patients suggesting that acoustical measurements recorded quantitatively with contact sensors (electronic stethoscopes) and analyzed using advanced computational analysis methods may provide an earlier diagnostic indicator of the onset of ACS than is possible with current clinical practice. Novel in silico models of respiratory acoustics utilizing image-based and algorithmically developed lungs with full conducting airway trees support and help explain measured acoustic trends and provide guidance on the next steps in developing and translating a diagnostic approach. More broadly, the experimental and computational techniques introduced herein, while focused on monitoring and predicting the onset of ACS, could catalyze further advances in mobile health (mhealth)-enabled, computer-based auscultative diagnoses for a wide range of cardiopulmonary pathologies.

References

References
1.
Weatherall
,
D. J.
,
2010
, “
The Inherited Diseases of Hemoglobin are an Emerging Global Health Burden
,”
Blood
,
115
(
22
), pp.
4331
4336
.
2.
Platt
,
O. S.
,
Brambilla
,
D. J.
,
Rosse
,
W. F.
,
Milner
,
P. F.
,
Castro
,
O.
,
Steinberg
,
M. H.
, and
Klug
,
P. P.
,
1994
, “
Mortality in Sickle Cell Disease—Life Expectancy and Risk Factors for Early Death
,”
N. Engl. J. Med.
,
330
(
23
), pp.
1639
1644
.
3.
Quinn
,
C. T.
,
Rogers
,
Z. R.
,
McCavit
,
T. L.
, and
Buchanan
,
G. R.
,
2010
, “
Improved Survival of Children and Adolescents With Sickle Cell Disease
,”
Blood
,
115
(
17
), pp.
3447
3452
.
4.
Brousseau
,
D. C.
,
Owens
,
P. L.
,
Mosso
,
A. L.
,
Panepinto
,
J. A.
, and
Steiner
,
C. A.
,
2010
, “
Acute Care Utilization and Rehospitalizations for Sickle Cell Disease
,”
JAMA
,
303
(
13
), pp.
1288
1294
.
5.
Charache
,
S.
,
Scott
,
J. C.
, and
Charache
,
P.
,
1979
, “
Acute Chest Syndrome in Adults With Sickle Cell Anemia: Microbiology, Treatment, and Prevention
,”
Arch. Intern. Med.
,
139
(
1
), pp.
67
69
.
6.
Castro
,
O.
,
Brambilla
,
D. J.
,
Thorington
,
B.
,
Reindorf
,
C. A.
,
Scott
,
R. B.
,
Gillette
,
P.
,
Vera
,
J. C.
, and
Levy
,
P. S.
,
1994
, “
The Acute Chest Syndrome in Sickle Cell Disease: Incidence and Risk Factors. The Cooperative Study of Sickle Cell Disease
,”
Blood
,
84
(
2
), pp.
643
649
.http://www.bloodjournal.org/content/84/2/643
7.
Paul
,
R. N.
,
Castro
,
O. L.
,
Aggarwal
,
A.
, and
Oneal
,
P. A.
,
2011
, “
Acute Chest Syndrome: Sickle Cell Disease
,”
Eur. J. Haematol.
,
87
(
3
), pp.
191
207
.
8.
Bartolucci
,
P.
,
Habibi
,
A.
,
Khellaf
,
M.
,
Roudot-Thoraval
,
F.
,
Melica
,
G.
,
Lascaux
,
A.-S.
,
Moutereau
,
S.
,
Loric
,
S.
,
Wagner-Ballon
,
O.
,
Berkenou
,
J.
,
Santin
,
A.
,
Michel
,
M.
,
Renaud
,
B.
,
Lévy
,
Y.
,
Galactéros
,
F.
, and
Godeauc
,
B.
,
2016
, “
Score Predicting Acute Chest Syndrome During Vaso-Occlusive Crises in Adult Sickle-Cell Disease Patients
,”
EBioMedicine
,
10
, pp.
305
311
.
9.
Mekontso Dessap
,
A.
,
Deux
,
J. F.
,
Habibi
,
A.
,
Abidi
,
N.
,
Godeau
,
B.
,
Adnot
,
S.
,
Brun-Buisson
,
C.
,
Rahmouni
,
A.
,
Galacteros
,
F.
, and
Maitre
,
B.
,
2014
, “
Lung Imaging During Acute Chest Syndrome in Sickle Cell Disease: Computed Tomography Patterns and Diagnostic Accuracy of Bedside Chest Radiograph
,”
Thorax
,
69
(
2
), pp.
144
151
.
10.
Taylor
,
C.
,
Carter
,
F.
,
Poulose
,
J.
,
Rolle
,
S.
,
Babu
,
S.
, and
Crichlow
,
S.
,
2004
, “
Clinical Presentation of Acute Chest Syndrome in Sickle Cell Disease
,”
Postgrad. Med. J.
,
80
(
944
), pp.
346
349
.
11.
Cohen
,
R. T.
,
Madadi
,
A.
,
Blinder
,
M. A.
,
DeBaun
,
M. R.
,
Strunk
,
R. C.
, and
Field
,
J. J.
,
2011
, “
Recurrent, Severe Wheezing is Associated With Morbidity and Mortality in Adults With Sickle Cell Disease
,”
Am. J. Hematol.
,
86
(
9
), pp.
756
761
.
12.
Morris
,
C. R.
,
2009
, “
Asthma Management: Reinventing the Wheel in Sickle Cell Disease
,”
Am. J. Hematol.
,
84
(
4
), pp.
234
241
.
13.
Sobota
,
A.
,
Graham
,
D. A.
,
Heeney
,
M. M.
, and
Neufeld
,
E. J.
,
2010
, “
Corticosteroids for Acute Chest Syndrome in Children With Sickle Cell Disease: Variation in Use and Association With Length of Stay and Readmission
,”
Am. J. Hematol.
,
85
(1), pp.
24
28
.
14.
Strouse
,
J. J.
,
Takemoto
,
C. M.
,
Keefer
,
J. R.
,
Kato
,
G. J.
, and
Casella
,
J. F.
,
2008
, “
Corticosteroids and Increased Risk of Readmission After Acute Chest Syndrome in Children With Sickle Cell Disease
,”
Pediatr. Blood Cancer
,
50
(
5
), pp.
1006
1012
.
15.
Knight-Madden
,
J.
, and
Greenough
,
A.
,
2014
, “
Acute Pulmonary Complications of Sickle Cell Disease
,”
Paediatr. Respir. Rev.
,
15
(
1
), pp.
13
16
.
16.
Royston
,
T. J.
,
Zhang
,
X.
,
Mansy
,
H. A.
, and
Sandler
,
R. H.
,
2002
, “
Modeling Sound Transmission Through the Pulmonary System and Chest With Application to Diagnosis of a Collapsed Lung
,”
J. Acoust. Soc. Am.
,
111
(
4
), pp.
1931
1946
.
17.
Ozer
,
M. B.
,
Acikgoz
,
S.
,
Royston
,
T. J.
,
Mansy
,
H. A.
, and
Sandler
,
R. H.
,
2007
, “
Boundary Element Model for Simulating Sound Propagation and Source Localization Within the Lungs
,”
J. Acoust. Soc. Am.
,
122
(
1
), pp.
657
671
.
18.
Acikgoz
,
S.
,
Ozer
,
M. B.
,
Royston
,
T. J.
,
Mansy
,
H. A.
, and
Sandler
,
R. H.
,
2008
, “
Experimental and Computational Models for Simulating Sound Propagation Within the Lungs
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
021010
.
19.
Peng
,
Y.
,
Dai
,
Z.
,
Mansy
,
H. A.
,
Sandler
,
R. H.
,
Balk
,
R. A.
, and
Royston
,
T. J.
,
2014
, “
Sound Transmission in the Chest Under Surface Excitation: An Experimental and Computational Study With Diagnostic Applications
,”
Med. Biol. Eng. Comput.
,
52
(
8
), pp.
695
706
.
20.
Dai
,
Z.
,
Peng
,
Y.
,
Henry
,
B.
,
Mansy
,
H. A.
, and
Royston
,
T. J.
,
2014
, “
A Comprehensive Computational Model of Sound Transmission Through the Porcine Lung
,”
J. Acoust. Soc. Am.
,
136
(
3
), pp.
1419
1429
.
21.
Peng
,
Y.
,
Dai
,
Z.
,
Mansy
,
H. A.
,
Henry
,
B. H.
,
Sandler
,
R. H.
,
Balk
,
R. A.
, and
Royston
,
T. J.
,
2016
, “
Sound Transmission in Porcine Thorax Through Airway Insonification
,”
Med. Biol. Eng. Comput.
,
54
(
4
), pp.
675
689
.
22.
Dai
,
Z.
,
Peng
,
Y.
,
Mansy
,
H. A.
,
Sandler
,
R. H.
, and
Royston
,
T. J.
,
2015
, “
Experimental and Computational Studies of Sound Transmission in a Branching Airway Network Embedded in a Compliant Viscoelastic Medium
,”
J. Sound Vib.
,
339
, pp.
215
229
.
23.
Henry
,
B.
, and
Royston
,
T. J.
,
2017
, “
A Multiscale Medical Image-Derived Analytical Model of Bronchial Airway Acoustics
,”
J. Acoust. Soc. Am.
,
142
(4), pp. 1774–1783.
24.
Kompis
,
M.
,
Pasterkamp
,
H.
, and
Wodicka
,
G. R.
,
2001
, “
Acoustic Imaging of the Human Chest
,”
Chest
,
120
(
4
), pp.
1309
1321
.
You do not currently have access to this content.